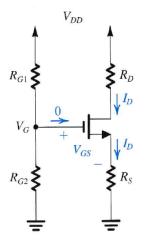

ECE 342: Electronic Circuits Problem Set #4

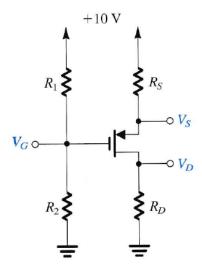
Summer 2025 Professor Schutt-Aine Due Date: 5pm, Tue July 8

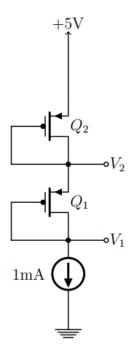
1. Consider the classical biasing scheme shown, using a 15 V supply. For the MOSFET, $V_t = 1.2$ V, $\lambda = 0$, $k_n' = 80 \ \mu$ A/V². $W = 240 \ \mu$ m, and $L = 6 \ \mu$ m. Arrange that the drain current is 2 mA, with about one-third of the supply voltage across each of R_S and R_D . Use 22 M Ω for the larger of R_{G1} and R_{G2} . What are the values of R_{G1} , R_{G2} , R_S , and R_D that you have chosen? Specify them to two significant digits. For your design, how far is the drain voltage from the edge of saturation?



2. Given $\mu nCox = 0.1 \text{mA/V}^2$ and $V_t = 1 \text{V}$ Determine the current I_B in the circuits shown in figure below. Note that the fractions next to transistors represent W/L

3. An enhancement NMOS transistor is connected in the bias circuit shown, with $V_G = 4$ V and $R_S = 1 \text{ k}\Omega$. The transistor has $V_t = 2$ V and $k_n'(W/L) = 2 \text{ mA/V}^2$. What bias current results? If a


transistor for which $k_n'(W/L)$ is 50% higher is used, what is the resulting percentage increase in I_D ?


4. Design the circuit shown below so that the transistor operates in saturation with V_D biased 1 V from the edge of the triode region, with $I_D = 1$ mA and $V_D = 3$ V for each of the following two devices (use a 10-µA current in the voltage divider):

- (a) $|V_t| = 1$ V and $k_p W/L = 0.5$ mA/V²
- (b) $|V_t| = 2 \text{ V}$ and k_p ' $W/L = 1.25 \text{ mA/V}^2$

For each case, specify the values of V_G , V_D , V_S , R_I , R_2 , R_S and R_D .

5. In the circuit below, find the unknown node voltages V_1 and V_2 , given V_{tp} =-1V, k_p 'W/L =1mA/V², and λ =0 for all transistors.

