# ECE 342 Electronic Circuits

# Lecture 6 MOS Transistors

Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@Illinois.edu



### **NMOS Transistor**



Typically L = 0.1 to 3  $\mu$ m, W = 0.2 to 100  $\mu$ m, and the thickness of the oxide layer (t<sub>ox</sub>) is in the range of 2 to 50 nm.



### **NMOS Transistor**



#### NMOS Transistor

- N-Channel MOSFET
- Built on p-type substrate
- MOS devices are smaller than BJTs
- MOS devices consume less power than BJTs



### **NMOS Transistor - Layout**







University of Illinois at Urbana-Champaign

## **MOS Transistor Operation**

#### • As $V_G$ increases from zero

- Holes in the p substrate are repelled from the gate area leaving negative ions behind
- A depletion region is created
- No current flows since no carriers are available
- As  $V_G$  increases
  - The width of the depletion region and the potential at the oxide-silicon interface also increase
  - When the interface potential reaches a sufficiently positive value, electrons flow in the "*channel*". The transistor is turned on
- As  $V_G$  rises further
  - The charge in the depletion region remains relatively constant
  - The channel current continues to increase



### MOS – Triode Region - 1





### **MOS – Triode Region - 1**





### MOS – Triode Region - 2



- Charge distribution is nonuniform across channel
- Less charge induced in proximity of drain

![](_page_8_Picture_4.jpeg)

## MOS – Active (Saturation) Region

$$V_{DS} = \left(V_{GS} - V_T\right) = V_{DSP}$$

Saturation occurs at pinch off when

![](_page_9_Figure_3.jpeg)

![](_page_9_Picture_4.jpeg)

### **NMOS – Circuit Symbols**

![](_page_10_Figure_1.jpeg)

![](_page_10_Picture_2.jpeg)

### **NMOS – Regions of Operation**

![](_page_11_Figure_1.jpeg)

$$V_{GS} > V_T$$
  

$$I_D = \mu_n C_{ox} \frac{W}{L} \left[ \left( V_{GS} - V_T \right) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$
  

$$V_{DS} < \left( V_{GS} - V_T \right)$$

#### **Saturation**

$$V_{GS} > V_T$$
  

$$V_{DS} > (V_{GS} - V_T)$$

$$I_D = \mu_n C_{ox} \frac{W}{2L} (V_{GS} - V_T)^2$$

![](_page_11_Picture_5.jpeg)

ECE 342 – Jose Schutt-Aine

### **NMOS – Drain Current**

![](_page_12_Figure_1.jpeg)

![](_page_12_Picture_2.jpeg)

D

### **NMOS – IV Characteristics**

![](_page_13_Figure_1.jpeg)

characteristics for a device with  $k'_n(W/L) = 1.0 \text{ mA/V}^2$ .

![](_page_13_Picture_3.jpeg)

### **MOS Threshold Voltage**

The value of  $V_G$  for which the channel is *"inverted"* is called the threshold voltage  $V_T$  (or  $V_t$ ).

- Characteristics of the threshold voltage
  - Depends on equilibrium potential
  - Controlled by inversion in channel
  - Adjusted by implantation of dopants into the channel
  - Can be positive or negative
  - Influenced by the body effect

![](_page_14_Picture_8.jpeg)

## nMOS Device Types

#### Enhancement Mode

- Normally off & requires positive potential on gate
- Good at passing low voltages
- Cannot pass full  $V_{DD}$  (pinch off)

### Depletion Mode

- Normally on (negative threshold voltage)
- Channel is implanted with positive ions ( $\rightarrow V_T$ )
- Provides inverter with full output swings

![](_page_15_Picture_9.jpeg)

### **Types of MOSFETS**

![](_page_16_Figure_1.jpeg)

![](_page_16_Picture_2.jpeg)

### **PMOS Transistor**

![](_page_17_Figure_1.jpeg)

- All polarities are reversed from nMOS
- $v_{GS}$ ,  $v_{DS}$  and  $V_t$  are negative
- Current *i*<sub>D</sub> enters source and leaves through drain
- Hole mobility is lower  $\Rightarrow$  low transconductance
- nMOS favored over pMOS

![](_page_17_Picture_7.jpeg)

### **PMOS – Regions of Operation**

![](_page_18_Figure_1.jpeg)

#### **Saturation**

$$V_{GS} < V_{TP} V_{DS} < (V_{GS} - V_{TP})$$
$$I_{D} = -\mu_{p} C_{ox} \frac{W}{2L} (V_{GS} - V_{TP})^{2}$$

![](_page_18_Picture_4.jpeg)

ECE 342 – Jose Schutt-Aine

### **PMOS – Alternative Equations**

**Cut off**   $V_{SG} < |V_{TP}|$   $I_D = 0$ **Triode** 

$$\begin{split} V_{SG} &> \left| V_{TP} \right| \\ V_{SD} &< \left( V_{SG} - \left| V_{TP} \right| \right) \end{split} \qquad I_D = \mu_p C_{ox} \frac{W}{L} \bigg[ \left( V_{SG} - \left| V_{TP} \right| \right) V_{SD} - \frac{1}{2} V_{SD}^2 \bigg] \end{split}$$

#### **Saturation**

$$V_{SG} > |V_{TP}|$$
  

$$V_{SD} > (V_{SG} - |V_{TP}|)$$
  

$$I_D = \mu_p C_{ox} \frac{W}{2L} (V_{SG} - |V_{TP}|)^2$$

![](_page_19_Picture_5.jpeg)

S