ECE 342 Electronic Circuits

Lecture 24 CS Frequency Response

Jose E. Schutt-Aine
Electrical & Computer Engineering
University of Illinois
jesa@Illinois.edu

MOSFET Amp Bandwidth

MOSFET amplifier has R_{sig} = 100 k Ω , C_{gs} = C_{gd} = 1 pF, g_m = 4 mA/V and R_L ' =3.33 k Ω . Find midband voltage gain and 3-dB frequency.

$$A_{M} = \frac{V_{o}}{V_{sig}} = -\frac{R_{in}}{R_{in} + R_{sig}} \left(g_{m} R_{L}^{'} \right) = -\frac{420}{420 + 100} \times 4 \times 3.33 = -10.8$$

MOSFET Amp Analysis

To determine the 3-dB frequency, we first evaluate the time constant associated with C_{gs} . First, we determine the resistance R_{gs} seen by C_{gs} . The capacitance C_{gd} is removed and V_{sig} is short-circuited

$$R_{gs} = R_{in} || R_{sig} = 420 k\Omega || 100 k\Omega = 80.8 k\Omega$$

The time constant associated with C_{gs} is

$$\tau_{gs} = C_{gs}R_{gs} = 1 \times 10^{-12} \times 80.8 \times 10^{3} = 80.8 \text{ ns}$$

MOSFET Amp Analysis

The resistance R_{gd} seen by C_{gd} is found by setting C_{gs} = 0 and short-circuiting V_{sig}

$$I_{x} = -\frac{V_{gs}}{R_{in}} - \frac{V_{gs}}{R_{sig}}$$

$$V_{gs} = -I_{x}R$$

$$V_{gs} = -I_{x}R'$$
 $R' = R_{in} \parallel R_{sig}$

$$I_{x} = g_{m}V_{gs} + \frac{V_{gs} + V_{x}}{R_{L}'}$$

$$R_{gd} = \frac{V_{x}}{I_{x}} = R' + R'_{L} + g_{m}R'_{L}R'$$

MOSFET Amp Analysis

The open-circuit time constant of $\,C_{gd}$ is

$$\tau_{gd} = C_{gd}R_{gd} = 1 \times 10^{-12} \times 1.16 \times 10^6 = 1160 \text{ ns}$$

The upper 3-dB frequency $\omega_{\!H}$ can now be determined from

$$\omega_H = \frac{1}{\tau_{gs} + \tau_{gd}} = \frac{1}{(80.8 + 1160) \times 10^{-9}} = 806 \, krad \, / \, s$$

$$f_H = \frac{\omega_H}{2\pi} = 128.3 \, kHz$$

