MIDTERM EXAM 1 - SOLUTIONS

(Closed book)

ECE 342

July 2nd, 2020 9:00 a.m. – 9:50 a.m.

<u>Instructions</u> : This examination consists of 7 multiple choice questions. Select the <u>most nearly</u> <u>correct answer</u> for each question. You are allowed to use a calculator.

Note 1. It is suggested that you answer the questions you consider easiest first.

Note 2. Choose only ONE answer per problem. Points will be taken off for multiple answers.

Formula Sheet

DIODE

PMOS
Cut-off
$V_{SG} < \left V_{tp} \right $, $I_D = 0$
Triode Region (Linear)
$V_{SG} > \begin{vmatrix} V_{tp} \\ W \end{vmatrix} & V_{SD} < V_{SDP} = V_{SG} - \begin{vmatrix} V_{tp} \\ V_{tp} \end{vmatrix}$
$I_D = \frac{W}{L} \mu_p C_{ox} \left((V_{SG} - V_{tp}) V_{SD} - \frac{V_{SD}}{2} \right)$
Active Region (Saturation)
$V_{SG} > \left V_{tp} \right \& V_{SD} \ge V_{SDP} = V_{SG} - \left V_{tp} \right $
$I_D = \frac{W}{L} \frac{\mu_p C_{ox}}{2} (V_{SG} - V_{tp})^2 \left[1 + \lambda V_{SD}\right]$

Body Effect

 $V_{t} = V_{to} + \gamma \left(\sqrt{|V_{SB}| + 2\phi_{F}} - \sqrt{2\phi_{F}} \right)$ Small Signal Characteristics (NMOS): $g_{m} = \sqrt{2\mu_{n}C_{ox}} \frac{W}{L}I_{D}; \quad r_{ds} = \frac{|V_{A}|}{I_{D}} = \frac{1}{\lambda I_{D}}$ Consider the circuit shown below

1. The Thévenin equivalent voltage across the terminals A'-A is (1 point)

(a)	$V_{th} = 1.33 \ V$	$2 + \frac{12 - V_x}{V_x} - \frac{V_x}{V_x} \rightarrow 2 + 3 - V \left(\frac{1}{1} + \frac{1}{1}\right) \rightarrow 5 - \frac{3V_x}{V_x}$
(b)	$V_{th} = 3.33 V$,	$2 + \frac{4}{2} = \frac{2}{2} = 2 + 3 = v_x \left(\frac{2}{2} + \frac{4}{4}\right) = 3 = \frac{4}{4}$
(c)	$V_{th} = 6.66 \ V$	20 20
(d)	$V_{th} = 8 V$	$V_X = \frac{20}{3}V \Longrightarrow V_{th} = \frac{20}{3}V, V_{TH} = 6.66 \text{ V}$
(e)	$V_{th} = 12 \ V$	(c) is correct answer
		(c) is concertainswer

2. The Thévenin equivalent impedance across the terminals A'-A is (1 point)

(a)	$Z_{th} = 1.33 \text{ k}\Omega$	
(b)	$Z_{th} = 2 \ k\Omega$	$\begin{cases} 4 \ln \alpha \\ 2 \ln \alpha \end{cases} = R_m$
(c)	$Z_{th} = 4 \ k\Omega$	$R_{\tau\mu} = 4 \ k\Omega \parallel 2 \ k\Omega = \frac{4}{2} \ k\Omega$
(d)	$Z_{th} = 6.66 \ k\Omega$	
(e)	$Z_{th} = 7.22 \ k\Omega$	$R_{TH} = 1.333 \ k\Omega$

(a) is correct answer

3. In the circuit shown, the diodes are ideal. Indicate the correct plot for V2 versus V1. (3 points)

The circuit shown below uses an enhancement-type PMOS transistor with $V_t = -1.5$ V, $k'_p(W/L) = 1$ mA/V², and $\lambda = 0$. Also, $R_{G1} = 4$ M Ω . The desired drain current is 0.5 mA and the drain voltage is +5V. Find values for R_{G2} , R_s and R_D .

- 4. What is the value of R_{G2} ? (1 point)
 - (a) $2 M\Omega$
 - (b) 3 MΩ
 - (c) 4 MΩ
 - (d) 6 MΩ
 - (e) $8 M\Omega$

$$R_{G2} = \frac{V_G}{(V_{DD} - V_G)} = \frac{6}{(10 - 6)} = 6M\Omega$$
$$\frac{R_{G2}}{R_{G1}} = \frac{10}{4}$$

(d) is correct answer

- 5. What is the value of R_D ? (1 point)
 - (a) $2 k\Omega$
 - (b) $5 k\Omega$
 - (c) $10 \text{ k}\Omega$
 - $(d) \qquad 15 \ k\Omega$
 - (e) $20 \text{ k}\Omega$

$$R_{D} = \frac{V_{D}}{I_{D}} = \frac{5}{0.5} = 10 \, k\Omega$$

(c) is correct answer

- 6. What is the value of the source voltage, V_{S} ? (2 points)
 - (a) 4.5 V $I_D = 0.5 = \frac{1}{2} \times 1 \times (V_{GS} + 1.5)^2 = \frac{1}{2} (V_{GS}^2 + 3V_{GS} + 2.25)$
 - (b) 5.5 V $1 = V_{GS}^2 + 3V_{GS} + 2.25 \Rightarrow V_{GS}^2 + 3V_{GS} + 1.25 = 0$
 - (c) 6.5 V(d) 7.5 V Good root is: $V_{GS} = -2.5 \text{ V}$. Other root (-0.5 V) is
 - (e) 8.5 V rejected since its magnitude is less than the magnitude

of the threshold voltage

$$V_{GS} = -2.5 V \Longrightarrow V_S = 8.5 V$$

(e) is correct answer

- 7. What is the value of Rs? (1 point)
 - (a) $1 k\Omega$
 - (b) $3 k\Omega$
 - (c) $5 k\Omega$
 - (d) $6 k\Omega$
 - (e) $9 k\Omega$

- $R_{s} = \frac{(V_{ss} V_{s})}{I_{D}} = \frac{(10 8.5)}{0.5} = 3 k\Omega$
 - (b) is correct answer