MIDTERM EXAM 2 - SOLUTIONS

(Closed book)

ECE 342 July 30, 2020

9:00 a.m. – 9:50 a.m.

<u>Instructions</u>: This examination consists of 10 multiple choice questions. Select the <u>most nearly</u> <u>correct answer</u> for each question. You are allowed to use a calculator.

Note 1. It is suggested that you answer the questions you consider easiest first.

 $\underline{\text{Note 2}}$. Choose only ONE answer per problem. Points will be taken off for multiple answers.

Formula Sheet

DIODE

$$I_D = I_S (e^{V_D/V_T} - 1)$$
, where $V_T = \frac{k_B T}{q} = 26 \text{ mV}$

NMOS	PMOS
Cut-off	Cut-off
Cut-off $V_{GS} < V_m , I_D = 0$ Triode Region (Linear) $V_{GS} > V_m & V_{DS} < V_{DSP} = V_{GS} - V_m$ $I_D = \frac{W}{L} \mu_n C_{ox} \left((V_{GS} - V_m) V_{DS} - \frac{V_{DS}^2}{2} \right)$ Active Region (Saturation) $V_{GS} > V_m & V_{DS} \ge V_{DSP} = V_{GS} - V_m$ $I_D = \frac{W}{L} \frac{\mu_n C_{ox}}{2} (V_{GS} - V_m)^2 \left[1 + \lambda V_{DS} \right]$	Cut-off $V_{SG} < \left V_{tp} \right , I_D = 0$ Triode Region (Linear) $V_{SG} > \left V_{tp} \right & & V_{SD} < V_{SDP} = V_{SG} - \left V_{tp} \right $ $I_D = \frac{W}{L} \mu_p C_{ox} \left((V_{SG} - \left V_{tp} \right) V_{SD} - \frac{V_{SD}^2}{2} \right)$ Active Region (Saturation) $V_{SG} > \left V_{tp} \right & & V_{SD} \ge V_{SDP} = V_{SG} - \left V_{tp} \right $ $I_D = \frac{W}{L} \frac{\mu_p C_{ox}}{2} (V_{SG} - \left V_{tp} \right)^2 \left[1 + \left \lambda \right V_{SD} \right]$

Body Effect

$$V_{t} = V_{to} + \gamma \left(\sqrt{\left| V_{SB} \right| + 2\phi_{F}} - \sqrt{2\phi_{F}} \right)$$

Small Signal Characteristics (NMOS):

$$g_m = \sqrt{2\mu_n C_{ox} \frac{W}{L} I_D}; \quad r_{ds} = \frac{|V_A|}{I_D} = \frac{1}{\lambda I_D}$$

BIPOLAR (NPN forward active $I_B>0$, $V_{CE}>V_{CE,sat}$)

$$I_C = I_S e^{V_{BE}/V_T} \cdot \left(1 + \frac{V_{CE}}{V_A}\right) \cong I_S e^{V_{BE}/V_T} \text{ where } V_T = \frac{k_B T}{q} = 26 \text{ mV}$$

$$I_C = \alpha I_E = \beta I_B \cdot \left(1 + \frac{V_{CE}}{V_A}\right) \cong \beta I_B \qquad \alpha = \frac{\beta}{\beta + 1}$$

Small Signal Characteristics:

$$g_{m} = \frac{I_{C}}{V_{T}}; \ \beta = g_{m}r_{\pi}; \ r_{\pi} = r_{e}(\beta + 1); \ r_{e} = \frac{V_{T}}{I_{E}}; \ r_{o} = \frac{|V_{A}|}{I_{C}}; \ \omega_{T} = \frac{g_{m}}{C_{\pi} + C_{\mu}}$$

For the circuit shown, assume that β is very large. Also $C_{\mu} = 1$ pF and $\omega_T = 5 \times 10^9$ radians/sec. It is desired to have a dc collector current of 2 mA. Use $V_{BEON} = 0.6$ V and assume that all coupling and bypass capacitors are midband short circuits.

1. The approximate value for R_E is: (1 point)

(a)
$$0.1 \text{ k}\Omega$$

(b)
$$0.7 \text{ k}\Omega$$

(c)
$$2.7 \text{ k}\Omega$$

(d)
$$4.7 \text{ k}\Omega$$

(e)
$$5.7 \text{ k}\Omega$$

$$V_B \simeq \frac{V_{CC}}{2} = \frac{12}{2} = 6V$$

$$V_E = V_B - 0.6 = 5.4V$$

$$I_C \approx I_E = 2mA \Rightarrow R_E = \frac{V_E}{I_E} = \frac{5.4}{2} = 2.7k\Omega$$

(c) is the correct answer

- 2. What is the value of the transistor's small-signal model transconductance g_m ? (1 pt)
 - (a) 33 mA/V
 - (b) 77 mA/V
 - (c) 154 mA/V
 - (d) 308 mA/V
 - (e) 1 A/V

- $g_m = \frac{I_C}{V_T} = \frac{2}{26} = 76.9 mA/V$
- (b) is correct answer
- 3. The switch S_I is now connected to V_{oI} and the output is collected at V_{o2} . An approximate value for the midband voltage gain is: (1 pt)
 - (a) 0.1
 - (b) 1.0
 - (c) 10
 - (d) 100
 - (e) 1000

This is the emitter follower configuration. The midband gain is:

$$A_{MB} = \frac{R_E}{R_E + r_e} = \frac{2.7}{2.7 + 0.013} = 0.9952 \approx 1$$

- (b) is correct answer
- 4. Next, the switch S_I is connected to V_{o2} and the output is collected at V_{oI} . What is the midband voltage gain? (1 pt)
 - (a) 1.5
 - (b) 150.0
 - (c) 200.0
 - (d) 1000
 - (e) 10000

This is the standard common-emitter configuration. The midband gain is:

$$A_{MB} = -g_m R_C = -76.9 \times 2 = -153.8$$

(b) is correct answer

5. What is the best estimate for the value of C_{π} ? (1 pt)

- (a) 1.3 pF
- (b) 2.4 pF
- (c) 7.2 pF
- (d) 10.6 pF
- (e) 14.4 pF

 $C_{\pi} = \frac{g_m}{2\pi f_{\tau}} - C_{\mu} = \frac{76.9 \times 10^{-3}}{5 \times 10^{+9}} - 10^{-12} = 14.38 \ pF$

(e) is correct answer

- 6. This circuit suffers from the Miller effect (1 pt)
 - (a) True
 - (b) False

 R_{sig} is $0 \rightarrow NO$ Miller effect: \rightarrow False

(b) is correct answer

- 7. Determine an approximate value for the upper 3dB corner frequency for the common-emitter configuration of this amplifier. (1 pt)
 - (a) 50 Hz

Since $R_{sig} = 0$

- (b) 100 kHz
- (c) 200 kHz
- (d) 80 MHz
- (e) 500 MHz

(d) is correct answer

 $f_H \simeq \frac{1}{2\pi C_u R_C'} = \frac{1}{2\pi \times 1 \times 10^{-12} \times 2 \times 10^3} = 79.57 \text{ MHz}$

The NMOS transistor in the discrete CS amplifier circuit shown in the figure is biased to have $g_m=1$ mA/V and $r_o=100$ k Ω .

8. An approximate value for the midband voltage gain is: (1 pt)

$$R_{D}^{'} = r_{o} \parallel R_{D} \parallel R_{L} = 100k \parallel 4.7k \parallel 10k = 3.09k\Omega$$

$$A_M \simeq -g_m R_D' = -(1 \times 10^{-3}) \times 3.09 \times 10^3 = 3.09 \, V / V$$

$$A_{MB} = 3.09$$

(a) is correct answer

- 9. This circuit suffers from the Miller effect (1 pt)
 - (a) True
 - (b) False

 R_{sig} is large \rightarrow Miller effect: True:

(a) is correct answer

- 10. If $C_{gs} = 1$ pF and $C_{gd} = 0.2$ pF, indicate the most correct value to approximate the 3dB upper-frequency point f_H . (1 pt)
 - (a) 100 kHz
 - (b) 150 kHz
 - (c) 300 kHz
 - (d) 550 kHz
 - (e) 850 kHz

$$f_{H} = \frac{1}{2\pi C_{in}R_{sig}'} \qquad R_{sig}' = R_{sig} \parallel R_{G}$$

$$C_{in} = C_{gs} + (1 + A'_{M})C_{gd}$$
 Miller Effect

$$C_{in} = 1p + (1 + 1m(100k || 4.7k || 10k)0.2 = 1.84 pF$$

$$f_H = \frac{1}{2\pi 1.84 \times 10^{-12} \times 0.1 \times 10^6} = 865 \text{ kHz}$$

More Exact Formula:

$$\begin{split} f_{H} & \simeq \frac{1}{2\pi \left\{ R_{sig} \left[C_{gs} + C_{gd} \left(1 + g_{m} R_{D}^{'} \right) \right] + C_{gd} R_{D}^{'} \right\}} \\ f_{H} & \simeq \frac{1}{2\pi \left\{ 100 \times 10^{+3} \left[1 \times 10^{-12} + 0.2 \times 10^{-12} \left(1 + 3.09 \right) \right] + 0.2 \times 10^{-12} \times 3.09 \times 10^{3} \right\}} \\ f_{H} & \simeq 0.8725 \ MHz \end{split}$$

$$f_H = 872.5 \text{ kHz}$$

(e) is correct answer