
ECE 451

Automated Microwave Measurements Laboratory

Experiment 04 - Network Analyzer Error Corrections:

The 1-term, 2-term, and 3-term Error Model

1 Introduction

When we make a microwave measurement, we have to construct a test setup in order to properly connect our
device under test (DUT). This test setup might include cables, adapters, �xtures, probes, etc. A reality of this
paradigm is that the measurement equipment we use will a�ect the measurement of the DUT. This e�ect on the
measurement is unavoidable and will cause an error in the measurement. Fortunately, if this error is known, it
can be corrected. The process of determining this error is called error correction or, more commonly, calibration.
Calibration consists of measuring a number of calibration standards, whose microwave properties are known very
precisely over the entire frequency range of the measurement. Based on the resulting data from the measurement
of these standards, we can construct a model of the characteristics of the microwave hardware in the measurement,
called an error model or error adapter. The network analyzer uses this error model to correct measurements of
the DUT to remove the systematic measurement errors. This allows us to view our DUT measurements as though
an ideal network analyzer were connected through the error adapter to a location where the calibration standards
are connected (test port). Calibration becomes the task of determining the variables in an error adapter and then
factoring them out to obtain error-corrected measurements of our DUTs.

In this experiment, we are going to make uncorrected measurements of calibration standards and our DUTs using
the Copper Mountain S5048 VNA. We will use the calibration standard measurements to identify the coe�cients in
the several error models we have developed. Finally, we will perform the error corrections on our DUT measurements
manually using ADS.

Useful links

1. Fundamentals of Network Analysis

2. Chapter 3 of the Handbook of Microwave Component Measurements with Advanced VNA Techniques by Joel
Dunsmore

2 Background

In general, the measured re�ection coe�cient of a network analyzer is not linearly related to the test port re�ection
coe�cient due to the realities of the measurement system. There are error terms (collectively called the error
adapter) that modify the desired measurement, ΓL, so that the actual measurement that we take, Γm, is a distortion
of the desired measurement. The purpose of calibration is to remove the e�ects of these errors. Doing so moves the
reference plane of the measurement from the measurement plane to the test port.

Figure 1shows this situation. The ratio detector is inside the network analyzer. It is similar to the apparatus
that we used in the previous experiment.
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Figure 1: Measurement apparatus including the error adapter

The use of �ow graphs o�ers a much more useful way to depict the error adapter, as shown in Figure 2. This
�gure depicts the 3-term error adapter for a 1-port measurement.

Figure 2: Flowgraph for 3-term Error Adapter

The quantities in error adapter represented by upper case letter are:
R: Re�ection Tracking [we only measure the product r*(R/r)]
D: Measurement System Directivity
S: Measurement System Source Match
And will be termed measurement descriptors.
Using Mason's Rule, we can determine the measured re�ection coe�cient in terms of the test port re�ection

coe�cient and the measurement system descriptor to be:

Γm =
m2

m1
= D +

R× ΓL

1− S × ΓL
=

D + (R− S ×D)ΓL

1− S × ΓL
with ΓL =

a2

b2

If R, S and D were known ΓL may be found in terms of Γm and the measurement system descriptors as

ΓL =
Γm −D

R + S(Γm −D)

Ideally, for a well designed and constructed measurement system, |R| ∼ 1 and |D|, |S| � 1. In calibration
procedures, we measure several standards for which ΓL is known. We use the known Γm values and the corresponding
Γm values that we measure from them to construct a system of equations from which we can solve for all of the
unknowns in our error adapter.

3 Pre-lab

Go to Appendicies for some notes for a start.
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1. Derive the two-term including directivity error (D) correction formula.

2. Derive the two-term including source match error (S) correction formula.

Note: For all of these derivations, you should identify your standards {match, short, open} but DO NOT
assume anything about their values: leave the values of their re�ection coe�cients in general variable form.
(For example,Γmatch

m , Γmatch
L , Γshortm , ΓshortL , Γopenm , ΓopenL .)You will need to solve for D, S, and R (as appropriate

for each error model) in terms of these variables, then provide an expression for ΓL in terms of Γm and
whichever of D, S, and R that are appropriate.

3. Derive the three-term error correction formula. For this derivation, you can use the theoretical values for
Γ
match
L = 0, ΓshortL = −1, Γopenm = 1 to make the algebra manageable. Include the appropriate signal
�ow graphs in all of your derivations. Hint: The one-term and both two-term error models are
simpli�cations of the 3-term error model. You can use this insight to verify your work.

4 Equipment

• CMT S5048 Compact VNA.

• N-type terminations.

• 15-foot N-type cable.

• N-type Student Unknown (remember to use the one you have used last time)

• N-type VSWR 2.5 Standard

• N-type VSWR 5.0 Standard

• Software: Keysight ADS

5 Procedure

1. Check if the VNA is turned on. Check for Quick guide on the website.

2. In the procedure below, we will be connecting a long cable to the VNA as shown in Figure 3. This cable will
distort our measurements signi�cantly so the e�ects of our calibration should be especially clear.

Figure 3: Block Diagram for this experimen

3. Set the frequency range to be from 300MHz to 1,300MHz.

4. The following devices are to be measured and their data is to be saved to Touchstone1 �le: (sample �le names
are given.)

(a) A short (�sht�)

(b) An open (�open�)

(c) A 50 ohm termination (�trm50�)

(d) Devices Under Test:

i. Your student unknown (�dutslx� where x is your unknown number)

1http://na.support.keysight.com/plts/help/WebHelp/FilePrint/SnP_File_Format.htm
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ii. A 2.5 VSWR standard (�dut25�)

iii. A 5.0 VSWR standard (�dut50�)

5. Open ADS, create a new workspace, and import all of these datasets in, giving them the same names as you
saved them in above. See the Notes on Using ADS at the end of the procedure for some advice on dealing
with multiple datasets.

6. Use ADS to calculate the error correction terms that you have derived in the theory questions for all four
error adapters. While error terms may have the same name in di�erent error adapters, they must
be calculated independently for each error model (for example, R for one-term is not equal in value
to R from three-term).

(a) R for one-term.

(b) R and S for two-term including source match.

(c) R and D for two-term including directivity.

(d) R, S, and D for three-term.

7. Calculate ΓL from Γm for each of the four error adapters for each of your three unknowns. You will be plotting
these ΓL values in the next two steps.

8. For your student unknown, obtain |S11| in dB, S11 Phase, and Smith Chart plots as a function of
frequency for the following (a total of 12 plots):

(a) One-term using a short for corrections (3 plots)

(b) Two-term including source match using a short and an open for corrections (3 plots)

(c) Two-term including directivity using a short, and a 50 ohm termination for corrections (3 plots)

(d) Three-term using a short, an open and a 50 ohm termination for corrections (3 plots)

9. For both VSWR standards, obtain Smith Chart plots only for the following (a total of 8 plots):

(a) One-term using a short for corrections (2 plots)

(b) Two-term including source match using a short and an open for corrections (2 plots)

(c) Two-term including directivity using a short and a 50 ohm termination for corrections (2 plots).

(d) Three-term using a short, an open and a 50 ohm termination or corrections (2 plots) With a compass,
draw the VSWR=2.5 and VSWR=5.0 circles on your Smith Charts.

10. Plot the Magnitude (magnitude, not in dB) and Phase of the three error terms�D, R and S that you calculated
for the three-term error model. Comment on their e�ects versus frequency.

Notes on Using ADS:

• Use the �Eqn� boxes to de�ne new variables. Since you are loading in so many datasets with the same
variable name (S11), it might be a good idea to de�ne new variables with more readily understandable
names for each dataset. Below, sht,5 open, and trm50 are datasets that have been loaded in. Use the form:
dataset_name..variable_name to access data from a particular dataset.

• It might be convenient to use multiple pages on your data display. You can do so by clicking Page > New
Page. . . . This way you can better organize your plots.

• Since the plots could be being printed in black and white, it is often wise to increase the thicknesses of the
traces of your plots and change the dash type if you have multiple traces on the same plot. You can do this by
right-clicking the trace and clicking �Item Options� This will open a dialog box in which you can increase the
thickness. Often, 2.0 thickness should read well on a printout, but this should be veri�ed for each printout.
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6 Conclusion

1. Which standards do you use with each two-term error model? Elaborate your choice?

2. Figure 4 shows Smith charts each showing known standards. Which group of standards can be used to
calibrate a network analyzer?

(a) Theoretically?

(b) Practically? (Which one of these groups might actually exist in real life and be a good group of stan-
dards?)

Figure 4: Smith charts each showing known standards

3. Real-life standards obviously have frequency dependence, and thus cannot be just �dots� on the Smith chart.
When is this not a problem? When is it a problem? How might we compensate for this frequency dependence
in our error correction?

4. Discuss the limitations of the standards used in this experiment. Why are they only valid standards over a
certain frequency range?

5. Discuss the physical signi�cance of R, S, and D, use the measured values to illustrate your reasoning.
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Appendix 1 - Error Models and Their Signal Flow Graphs

One Term Model

Figure 5: Flowgraph for one-term model of re�ectometer

The measurement in terms of the load for the one-term model is Γm(ΓL) = R(1)ΓL.

Using a short for calibration Γm(−1) = R(1)(−1) or R(1) = −Γm(−1) so that Γm(ΓL) = Γm(ΓL)
Γm(−1) .

Two Term Models

Figure 6: Flowgraph for two-term error model including directivity
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Figure 7: Flowgraph for two-term error model including source match

Three Term Model

Figure 8: Flowgraph for three-term error model for re�ectometry measurement
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Appendix 2 - Theory and Conclusion Notes

The re�ectometer error adapter may be represented as three complex numbers in an �error box�. The nodes a and
b in Figure 9 represent the reference and test channels, respectively, and are measured using two detectors

Figure 9: Flowgraph for three-term error model

Signi�cance of R, S, and D
D: �measurement system directivity�
S: �measurement system source match�
R: �measurement system re�ection�
In many applications, the error box models a section of cable or some kind of connector/adapter. Therefore,

typical values for these parameters are |D|,|S| � 3 and |R| ≈ 1.
Notice that we could also model the error box using S-parameters, let

D = S11, S = S22,
R

r
= S21, r = S12

.
but the error correction equation,

Γm =
b

a
= D +

RΓL

1− SΓL

contains no r, and this quantity cannot be found using the three standards. Similarly, we could only determine
S11 , S22 , S12S21 of the error box by measuring the three standards.

In general, solving for the terms in the error box is nonlinear, as seen below. However, a change of variables
yields a linear system which is practically implemented in hardware:

Γm = D +
RΓL

1− SΓL
=

x1 + x2ΓL

1− x3ΓL
.

Given known standards ai = Γ
(i)
L , and measured values ci = Γ

(i)
m , the unknowns are expressed as

x1 = D
x2 = R− SD
x3 = S

⇒

 1 a1 a1c1

1 a2 a2c2

1 a3 a3c3

 x1

x2

x3

 =

 c1

c2

c3

⇒ D = x1

R = x2 + x1x3

S = x3

.

(see page 132 of Dunsmore.)
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