ECE 451
Automated Microwave Measurements

Time-Domain Reflectometry

Fall 2005

Jose E. Schutt-Aine
Electrical & Computer Engineering
University of Illinois
jose@emlab.uiuc.edu
Using Frequency Domain Data for Time-Domain Simulation

Goal: Simulate the time-domain response of a network using frequency-domain measurements.

Motivation: Fast rise time pulse and steps are difficult to design; but high-frequency signals are available.
Scattering parameter of one-port network can be measured over a wide frequency range. Since incident and reflected voltage waves are related through the measured scattering parameters, the total voltage can be determined as a function of frequency.
One-Port S-Parameter Measurements

\[V_f(x = 0, \omega) = \frac{V_s(\omega)}{2} \]

\[V_b(x = 0, \omega) = \frac{V_s(\omega)}{2} S_{11}(\omega) \]

\[V(x = 0, \omega) = \frac{V_s(\omega)}{2} [1 + S_{11}(\omega)] = V_o(\omega) \]
Frequency-to-Time Analysis

$S_{11}(\omega)$ is measured experimentally. Assume $v_s(t)$ to be an arbitrary time-domain signal (unit step, pulse, impulse). $V_s(\omega)$ is its transform

$$V_s(\omega) = \int_{-\infty}^{\infty} v_s(t) e^{-j2\pi ft} dt$$

Since the system is linear, its response in the time domain is the superposition of the responses due to all frequencies

$$v_o(t) = \int_{-\infty}^{\infty} V_s(\omega)[1 + S_{11}(\omega)] e^{+j2\pi ft} dt$$
Transformation Steps

• Measure $S_{11}(f)$

• Calculate $V_s(\omega)$ analytically

• Evaluate $V_o(\omega) = [1 + S_{11}(\omega)]$.

• Feed $V_o(\omega)$ into inverse Fourier transform to get $v_o(t)$
Problems and Issues

- **Discretization**: (not a continuous spectrum)
- **Truncation**: frequency range is band limited

F: frequency range
N: number of points
\(\Delta f = \frac{F}{N} \): frequency step
\(\Delta t = \) time step
Addressing Frequency and Time Limitations

1. For negative frequencies use conjugate relation $V(-\omega) = V^*(\omega)$

2. DC value: use lower frequency measurement

3. Rise time is determined by frequency range or bandwidth

4. Time step is determined by frequency range

5. Duration of simulation is determined by frequency step
<table>
<thead>
<tr>
<th>Problems & Limitations (in frequency domain)</th>
<th>Consequences (in time domain)</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discretization</td>
<td>Time-domain response will repeat itself periodically (Fourier series) Aliasing effects</td>
<td>Take small frequency steps. Minimum sampling rate must be the Nyquist rate</td>
</tr>
<tr>
<td>Truncation in Frequency</td>
<td>Time-domain response will have finite time resolution (Gibbs effect)</td>
<td>Take maximum frequency as high as possible</td>
</tr>
<tr>
<td>No negative frequency values</td>
<td>Time-domain response will be complex</td>
<td>Define negative-frequency values and use (V(-f) = V^*(f)) which forces (v(t)) to be real</td>
</tr>
<tr>
<td>No DC value</td>
<td>Offset in time-domain response, ringing in base line</td>
<td>Use measurement at the lowest frequency as the DC value</td>
</tr>
</tbody>
</table>
Microstrip Line TDR Simulation