Agilent NVNA & X-Parameters

The new paradigm for nonlinear measurements, modeling, and simulation with ADS of nonlinear components

Measuring nonlinearities for use directly in design

Wouldn't it be nice if you could measure and display the full amplitude and phase information of each spectral component?

Wouldn't it be even nicer to then use it directly in ADS harmonic balance or circuit envelope simulation?

Nonlinear Vector Network Analyzer (NVNA): The new industry standard for nonlinear measurements

Fast, Accurate, and Easy to Use !

The most innovative HP/Agilent instrument in 25 years! Co-developed by CTD and HFTC

NVNA = PNA-X + Phase Ref. ckt.

- + Application SW and calibration (mag and phase)
- + ADS-simulation application with X-parameter measurement option

NVNA measures *Magnitude and Phase* of all relevant frequency components (cross-frequency coherence) necessary to measure X-parameters!

S-parameters: linear measurement, modeling, & simulation

• Easy to measure at high frequencies

- measure voltage traveling waves with a (linear) vector network analyzer (VNA)
- don't need shorts/opens which can cause devices to oscillate or self-destruct
- Relate to familiar measurements (gain, loss, reflection coefficient ...)
- Can cascade S-parameters of multiple devices to predict system performance
- Can import and use S-parameter files in electronic-simulation tools (e.g. ADS)
- BUT: No harmonics, No distortion, No nonlinearities, ...

Invalid for nonlinear devices excited by large signals, despite ad hoc attempts

What are X-Parameters?

X-parameters are the mathematically correct superset of Sparameters, applicable to both large-signal and small-signal conditions, for linear and nonlinear components *The math exists!*

We can measure, model, & simulate with X-parameters Each part of the puzzle has been created The pieces now fit together seamlessly

X-parameters come from the Poly-Harmonic Distortion (PHD) Framework

X-parameter Concept: Approxs. to NL Mapping

X-Parameters: Why They are Critical:

$$B_{e,f} = X_{ef}^{(F)}(|A_{11}|)P^{f} + \sum_{g,h} X_{ef,gh}^{(S)}(|A_{11}|)P^{f-h} \cdot A_{gh} + \sum_{g,h} X_{ef,gh}^{(T)}(|A_{11}|) P^{f+h} \cdot A_{gh}^{*}$$
$$P = e^{j\varphi(A_{11})}$$

Cascaded Nonlinear Amplifiers: Nonlinear effects of mismatch versus drive

- •Unambiguously identifiable (simple, automated extraction) from automated set of measurements
- •Fully nonlinear vector quantities (Magnitude and phase of all harmonics)
- •Extremely accurate for high-frequency, distributed nonlinear circuits
- •Cascadable (correct behavior in mismatched environment)

Results: Design of Cascade vs. Measurement of Cascade

Objective: Design nonlinear circuits in ADS from NVNA-measured X-parameter component data

X-parameters are superior to Hot S22

Cascaded Measurement

Cascaded Design with X-parameters

Cascaded Design with "Hot S-parameters" but No X^(T) terms

"X-parameters enable predictive nonlinear design from NL data"

NVNA System Configuration

Black-Box Characterization & Behavioral Modeling

Actual Amp Circuit

TC-200

Measurement-Based Model

- Circuit models don't exist
- Completely protect design IP

Detailed Circuit Model (SPICE/ADS) of IC

PHD Framework: Simulating with Measured Data

ADS

Example: X-Parameters Verification

Results Cascaded Simulation vs. Measurement

Red: Cascade Measurement Blue: Simulation of Cascaded Models

Input / Output Spectrums & ACPR

freq, MHz

TransACPR(1)	TransACPR(2)
-37.651	-35.469

ChannelPower_dBm	PAE
20.038	9.987

PA Linearization using X-Parameters in ADS Digital Pre-Distortion Linearization Design Guide

Summary

- X-parameters are a mathematically correct superset of Sparameters for nonlinear devices under large-signal conditions
- X-parameters (for two-port devices under large-signal excitation from a single large input tone in this offering) can be accurately measured by automated set of experiments on the new Agilent NVNA instrument
- Together with the PHD Framework, measured X-parameters can be used in ADS to design nonlinear circuits
- All pieces of the puzzle are $a\sqrt{2}$ able and they fit together!

