

Find

1) Reflection coefficient at load

$$z_R = 0.3 - j0.4 \Longrightarrow \Gamma_R = 0.6e^{j227^4}$$

2) SWR on the line

SWR=4.0

3) *d_{min}*

 $d_{\min} = (0.5 - 0.435)\lambda = 0.065\lambda$

4) Line impedance at 0.05λ to the left

 $50(0.26 - j0.09) = 13 - j4.5\Omega$

5) Line admittance at 0.05λ

$$(3.5+j1.2)/50 = 0.068 + j0.025 \text{ or }$$

6) Location nearest to load where Real[y]=1

 $0.14\lambda = 0.325\lambda - j0.185\lambda = 0.14\lambda$

IMPEDANCE OR ADMITTANCE COORDINATES

VSW minimum occurs at 0.30 λ from the termination of a lossless 50- Ω line. Find angle of reflection coefficient

Answer: 36°

If the VSWR is 2.0 what is z_R ?

Answer: $z_R = 1.57 + j0.7$

8

\$ \$ 5

-.... 7 -11) H 10 The second secon . 304 ю × × k

ÇENTER

÷

6

÷ ŝ 3 B

.....

ġ

IMPEDANCE OR ADMITTANCE COORDINATES

Single Stub

Find location and length of stub

$$z_R = Z_R / 50 = 0.6 - j0.8$$

 $y_R = 0.6 + j0.8$

First Method

Rotate on constant VSWR circle from 0.125λ to 0.1665λ until intersection with unit conductance circle at $y'_1 = 1 + j1.16$. Distance $d_s = (0.1665\lambda - 0.125\lambda) = 0.0415\lambda$ Move toward center of chart. Change in susceptance: j(0-0.16)=-j1.16

The length of the stub is such that

$$\frac{1}{\tan\beta l_s} = -1.16 \text{ or } l_s = (0.363 - 0.25)\lambda = 0.113\lambda$$

Second Method

 $y_R = 0.6 + j0.8$

Rotate on constant VSWR circle from until intersection with unit conductance circle at 0.335λ at $y'_1 = 1 - j1.16$. $d_s = (0.335\lambda - 0.125\lambda) = 0.210\lambda$ Move toward center of chart. Change in susceptance: is +j1.16. Therefore, the length of the stub is such that

$$\frac{1}{tan\beta l} = +1.16 \text{ or } l_s = (0.632 - 0.25)\lambda = 0.382\lambda$$

Analysis of double stub

- 1) Get y_R from Z_R
- 2) Rotate on constant VSWR circle by d_1 to get y_1'
- 3) Move on constant g circle by susceptance of stub1 to get to $y_{I.}$
- 4) Rotate on constant VSWR circle by d_2 until intersection with g = 1 circle.
- 5) Move toward center of chart.1

Double-Stub circuit (Generalization)

IMPEDANCE OR ADMITTANCE COORDINATES

5-16

Double Stub – Example 1

Find l_{s1} and l_{s2}

1 st Solution	2 nd Solution			
1) Convert to y_R by rotating by 180 degrees.	1) Convert to y_R by rotating by 180 degrees.			
$y_R = 0.6 + j0.8 (y_R = y_I' \text{ since } d_I = 0)$	$y_R = 0.6 + j0.8 (y_R = y_1' \text{ since } d_1 = 0)$			
2) Draw auxiliary circle ($g=1$ circle rotated by $3\lambda/8$)	2) Draw auxiliary circle ($g=1$ circle rotated by $3\lambda/8$)			
 Auxiliary circle intersects g=0.6 circle at 0.6-j0.1=y₁. 	 Auxiliary circle intersects g=0.6 circle at 0.6-j1.9=y₁. 			
4) Rotate by $3\lambda/8$ until intersection at $g=1$ circle; y_2 '=1-j0.5.	4) Rotate by $3\lambda/8$ until intersection at $g=1$ circle; y_2 '=1+j2.5.			
5) Move along constant conductance circle until center.	5) Move along constant conductance circle until center.			
Calculate l_{s1} :	Calculate l_{sI} :			
$\frac{1}{j\tan\beta l_{s1}} = j(-0.1 - 0.8) = -j0.9$	$\frac{1}{j\tan\beta l_{s1}} = j(-1.9 - 0.8) = -j2.7$			
$l_{s1} = (0.384 - 0.25)\lambda = 0.134\lambda$	$l_{s1} = (0.307 - 0.25)\lambda = 0.057\lambda$			
$\frac{1}{j \tan \beta l_{s2}} = j \left[0 - (-0.5) \right] = +j0.5$	$\frac{1}{j \tan \beta l_{s2}} = j [0 - 2.5] = -j2.5$			
$l_{s2} = (0.574 - 0.25)\lambda = 0.324\lambda$	$l_{s2} = (0.31 - 0.25)\lambda = 0.06\lambda$			

$z_R =$	(30-	j40)	/50 =	0.6 - j0.8
---------	------	------	-------	------------

IMPEDANCE OR ADMITTANCE COORDINATES

Double Stub – Example 2

Find l_{s1} and l_{s2}

$$z_R = (50 + j100) / 100 = 0.5 + j1.0$$

- 1) Normalize admittance, $y_R = 0.4 j0.8$
- 2) Rotate by $\lambda/4$ toward source $y'_1 = 0.5 + j1.0$
- 3) Draw auxiliary circle (g=1 circle rotated by $\lambda/8$)
- 4) Auxiliary circle intersects g = 0.5 circle at $y_1 = 0.5+j0.14$. \rightarrow change = j(0.14-1.0) = -j0.86,
- 5) Add stub $(0.388 0.25)\lambda = 0.138\lambda$
- 6) Rotation by $\lambda/8$ must end on g = 1 circle, $y'_2 = 1 + j0.73$

7) Add stub2 such that
$$\frac{1}{j \tan \beta l_{s^2}} = -j0.73$$

8)
$$l_{s2} \simeq (0.4 - 0.25)\lambda = 0.15\lambda$$

