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“Thru-Reflect-Line”: An Improved Technique
for Calibrating the Dual Six-Port

Automatic Network Analyzer
GLENN F. ENGEN, SENIOR MEMBER, lEEE, AND CLETUS A. HOER MEMBER, IEEE

AfMtrvzct-In an earlier paper, the use of a “thru-short-delay” (TSD)

teelndque for calfbratiag the dual six-port automatic network analyzer was

descrfbed. Another scheme required only a length of precision transrnkdon

Ifrw and a “caffbratlon eircuk” The better features of these two somewhat

different approaches have now been combined and the requirement for

either a known shortj or a “calibration circuit” eliminated. This paper will

develop the theory for this new procedure.

I. INTRODUCTION

1

~ HE APPLICATION of digital technology to the

. field of microwave measurement is perhaps best

illustrated by the automatic network analyzer (ANA). In

addition to the time-saving features, however, a major

shift in measurement strategy has been introduced. In

particular, the requirement for an ideal item of test equip-

ment (e.g., reflectometer) has been replaced by a more

complete theory in which deviations from the ideal are

explicitly recognized, evaluated, and, in theory, eliminated

from the final measurement result. The determination of

these “deviations from the ideal” is generally referred to

as the ANA “calibration.”

In the case of the conventional ANA, which is based

upon the four-port reflectometer, it is convenient [1] to

visualize the calibration as shown in Fig. 1. Here the

nonideal reflectometer has been modeled by an ideal one

in cascade with a two-port “error box.”

The properties of the ideal reflectometer can be chosen

in such a way that its sidearm wave amplitudes b3, b4 are,

respectively, equal to the (emergent and incident waves at

a fictitious “detector plane” which is the input to the

two-port “error box.” The parameters of the “error box”

are provided by the ANA calibration. After this has been

done, these parameters, in combination with the reading

of the complex ratio detector, permit an “exact” de-

termination of the signals at the measurement plane.

In order to make two-port measurements, it is con-

venient to, introduce a second (nonideal) reflectometer

and complex ratio detector which is then modeled in the

same way as the first one. This is shown in Fig. 2.

The calibration requirement now calls for obtaining the

parameters of error boxes A and B. One procedure for

doing this is via the “thru-short-delay” (TSD) technique

[2], [3]. In this technique, the error boxes A, B become the
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Fig. 1. It is convenient to model a reflectometer as an ideal one in
cascade with a two-port “error box.”
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Fig. 2. For two-port measurements a second reflectometer is added
and modeled as the first. Parameters of the two error boxes are obtained
from measurements with the connections shown, where for TSD a
known short is generally used, while for TRL any unknown highly
reflecting termination may be used.

key components in three additional (fictitious) two-ports.

The first of these is the cascade combination of A and B

and is formed (Fig. 2) merely by connecting measurement

planes 1 and 2 together (thru). The second two-port is a

degenerate one and results from terminating the measure-

ment planes with shorts (short). Finally, the substitution

of an (unknown) length of (nonreflecting) line between

the measurement planes 1, 2 yields the third two-port

which is thus comprised of A, the length of line, and B in

cascade (delay). Given the scattering parameters of these

three two-ports, it is possible to solve for the individual

scattering parameters of error two-ports A, B.
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The six-port reflectometer [4] differs from the four-port

version in that it is based upon a six- rather than a

four-port junction, and where the requirement for a com-

plex ratio detector has been eliminated in exchange for

four power meters or other detectors which yield ampli-

tude information only. It has been shown ([5], [6]), however,

that the six-port may be modeled by an equivalent (non-

ideal) four-port and complex ratio detector. Following this

the TSD procedure may be applied as outlined above [7].

This is illustrated in Fig. 3. An alternative procedure for

applying TSD to the dual six-port is found in [8].

Another calibration procedure [9] was based upon the

use of a length of line as the only impedance standard.

This method also required, however, the use of a “calibra-

tion circuit” which provided for terminating the two six-

ports with equal impedances and at the same power levels.

The better features of these methods have now been

combined in a technique known as “thru-reflect-line”

(TRL). Here the “calibration circuit” is no longer re-

quired. As compared with TSD, the need for a short of

known reflection has been eliminated. In its place a

termination of unknown reflection (but different from

zero !) is used to terminate, in turn, each of the six-ports.

While a nominal short continues to be one of the more

convenient choices for the unknown termination, the key

point is that a value for its reflection is no longer required.

Instead this is obtained as a by-product of the procedure.

In addition, the word “line” has been substituted for

“delay” as more descriptive of the technique. In common

with TSD, the line length is arbitrary and unknown (other

than being different from A/2!). Moreover, it need not be

free of dissipation.

There are three distinct parts to the associated theory:

1) the six-port to four-port reduction, 2) the determination

of the scattering parameters of the two-ports which result

from the thru, reflect, and line connections, and 3) the

application of the TRL solution. These will be discussed

in the order given.

IL THE SIX-PORT TO FOUR-PORT REDUCTION

As described in an earlier paper [6], the four power

measurements associated with the six-port represent an

overdetermined set in that three of them determine the

fourth to the extent of a choice between two possible

values. It is convenient to express this result by means of

the constraining relationship,

a(P3/ I’J2 + bJ2(P5/PJ2 + cp2(F’J PJ2

+(c– a– b){(P3P5/P~) +(b–a– c)p(P3PJPJ)

+ (a – b – c){p(P#6/P~) + a(a – b – C)(PJPO)

+ b(b– a– c){(P~/PJ+ C(C– a– b)p(PJPJ+ abc=O

(1)

where a, b, c, J, and p are five real constants, whose values

are intrinsic properties of the six-port. These five con-

stants also characterize the reduction from a six-port to a

four-port.
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Fig. 3. The six-port reflectometer may also be reduced to an ideal
four-port in cascade with an “error box.”

Let P3/Pd, P~/Pb, and P6/Pe represent a point in a

three-dimensional “P-space.” Equation (l), which is of

second degree, is thus represented by a quadric surface in

P-space. However, the nine coefficients in (1) (i.e., a, b; 2,

cp2, etc.), are functions of the five parameters a. . . p.

Moreover, it has been shown [6] that the quadric surface

described by (1) is an elliptic paraboloid which is tangent

to the planes P3/Pd = O, P5/P4 = O, PJ Pd = O. The im-

mediate task is to determine a. . . p, which, in turn, per-

mits the six-port to be reduced to a four-port.
In theory, it is only necessary to observe P3. . . P6 for

five arbitrary and unknown terminations. These may then

be inserted in (1) to obtain a set of simultaneous equations

in s.. . p. Unfortunately, however, these are of third de-

gree, and unless a good initial estimate is in hand, the

iterations required by standard numerical methods tend to

be lengthy and may fail to yield the desired root. To

obtain the initial estimate, it is useful to start with nine (or

more) arbitrary terminations, which in practice are pro-

vided by the phase shifter in conjunction with the thru,

reflect, and line connections, etc. The corresponding sets

of values for P3. . . Ph are substituted in the equation

A(P3/P4)2+ B(P5/P4)2+ c(p6/p4)2+~(~3p5/@

+ E(P3P6/P;) + F(P~P6/P;) + G(P3/P4)

+ H(P5/P4) + I(P6P4) + 1 = o

and the resulting set of linear equations solved for A.

(2)

. I.
In principle, (1) and (2) represent the same surface so that

by equating the coefficients one has A = a/abc, B=

b{2/abc,. . . . I= C(C– a – b)p/abc. The system of equa-
tions, which results from equating the coefficients, is next

solved for a. . . p as functions of A. ..1. By substitution it

can be confirmed thatl

b=(2D– GH)/(2AH– DG) (3)

c=(2E - GZ)/(2AZ - EG) (4)

a= b+c+ G/A (5)

{=+vzz (6)

p=+v’zz (7)

‘ In addition, in the ideal case, there are constraining relations among
the ,4... I such as DE= A HI, CDH = BEI, DF= BGI, EF= CGH, etc.,
so that a variety of alternative expressions for a. . . p is possible. How-
ever, since (3)–(7) are only used to obtain an initial starting point, this
additional information, in this context at least, is of no obvious practical
value.
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where, by definition [6], J and p are positive. Because of

measurement error, however, the paraboloid and tangency

conditions will only be approximately satisfied by (2). In

order to improve the accuracy, these values of a.. ” p are

used as the starting point for an iteratative solution using

the multidimensional Newton method, to the nonlinear

system of equations based on (1). This also provides a

convenient method for using all of the observations,

although the system is now overdetermined.

After these improved values a.. ” p have been obtained,

these together with the observed P3””” Pb may be used to

determine the complex ratio bJb4 which, as already

noted, is also the reflection coefficient at the input of the

error box. Let bJ bd = w = u +jo. It has been shown [6]

that

U=(P3– JP5 + cP4)/(2P4ti ) (8)

v = (P3 – pp~ + (b – 2uu2)P4)/(2P&) (9)

where

zz2=(b+c-a)/(2fi) (lo)

and

?)2 =
i

b–u; . (11)

(The signs of the radicals are to be taken as positive.) This

completes the six-port to four-port reduction.

III. DETERMINATION OF SCATTERING PARAMETERS

The next task is to determine the scattering parameters

of the three fictitious two-ports which are obtained from

the thru, reflect, and line comections as indicated by the

dashed box in Fig. 4. The emergent wave amplitudes b],

bz, (b~, bj) at terminals 1 and 2 are related to the incident

waves al, a2, (bq, b~) by the well-known scattering equa-

tions

b,= Sllal + S1za2 (12)

bz = Szlal + Szzaz (13)

where the S*. are the scattering coefficients. Dividing the

first of these by al, the second by az, and

the ratio aJa2 between them yields

W2S11+ W1S22– A= W1W2

where

A= S1,S22 – S12S21

and

WI= bl/al =bJb4

Wz= bJa2 = V3/b&

then eliminating

(14)

(15)

(16)

(17)

Given the appropriate power meter readings and a””” p

for each six-port, the Wi maybe obtained from (8) and (9).

Excitation of the junction under three different conditions

provides a system of linear equations based on (14) which

may be solved for S11, S22, and A [101.Following this, the
product S12S21 may be obtained by use of (15). The
technique does not permit the individual terms, Slz or S21

to be obtained, but this is not required. While a minimum

9s9
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Fig, 4. The fictitious two-ports, from which the parameters of “error
boxes” A,B are ultimately obtained, are formed from a “thrw” “re-
flect; and “line” connection.

of three measurements (under different excitation condi-

tions, i.e., values of a2/al) are required in each of the thru

and line connections, only a single measurement is re-

quired with the reflect comection, since here Slz = S2, = O.

Moreover, in this case

Sii = Wi i=l,2. (18)

IV. THE TRL SOLUTION

Given S1~, S22, S12S21 for the three fictitious two-ports

which result from the thru, reflect, and line connections,

the final task is to determine, insofar as possible, the

scattering parameters of the individual error boxes, -4, B.

First, it is useful to solve (12) and (13) for bl and al as

functions of az and bp This gives

(::)=+(=:2:“)(:)
()

a2
=Rb. (19)

2

In (19) the matrix R is known as the waue cascading

matrix. It has the important property that the R matrix for

two or more two-ports in cascttde is merely the product of

the individual R matrices.

Let the cascading matrices of the error two-ports xl, B

be denoted by R., R~, respectively, while R, represents
their cascade “thru” connection. Then

R,= RaR~ (20)

while if Rd represents the “line” combination

Rd = R.RIR~ (21)

where R, represents the line which has been inserted.

Solving (20) for Rb gives

Rb = R.- lR, (22)

so that Rb may be obtained from R. and Rt. Next, (22) is

used to eliminate R~ from (21). This yields

TR~ = RaRl (23)

where

T= RdRt– ‘ (24)

and which may thus be found from the parameters of the

thru and line “two-ports.”

If y and 1 represent respectively the propagation con-

stant and length of the delay line, then assuming the line
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is nonreflecting,

‘=(:”9 (25)

Finally, the elements of Ra and T will be represented by rti

and tti,respectively. Expansion of (23) gives

tllrll+tlzrzl=rlle – yl
(26)

t21rll + tzzrzl = r21e - yl (27)

t,1r12+t12r2z= r12e yl (28)

71t21r12+ t2zrz2= r22e . (29)

Next, taking the ratio of (26) to (27), and of (28) to (29)

gives

t21(r1,/r2J2+(t22–lll)(rll/r21) – t12=0 (30)

t21(r12/r22)2 + (t22 – tl J(r1Jr22) – t12= O. (31)

The ratios (rll/r21) and (r12/r2J are thus both given by a

solution of the same quadratic equation, where the coef-

ficients are parameters of the T-matrix. The problem of

which root represents which ratio will be deferred to the

following section. For the moment it will be assumed that

(rll/r2J and (r12/r2J have been determined. Following

this, by taking the ratio of (29) to (27) one has

t21(r12/ r22) + t22
eh! = (32)

t12(r21/rl J + tll “

Ordinarily, a system of four equations (26)–(29) can be

solved to yield four unknowns. At this point, three have

been obtained: (r, ,/rJ, (rJ rz), and e271.BY t~ing the

determinant of (23), and noting that the determinant of a

product is equal to the product of the determinants, it is

easy to show that

tlltzz–t,~tzl= 1 (33)

thus there are only three independent parameters in the T

matrix. It follows that there are only three independent

experimental observations in (26)–(29), and since they

have been solved for three unknowns, there is nothing

more that can be learned from this system of equations.

It is perhaps desirable to stop and make certain ob-

servations on the practical application of the theory devel-

oped thus far. By means of (30), (31), and (32), it is

possible to obtain (rl l/rJ, (rJrzJ, and e271from rati~~

among the elements of T. This matrix, in turn, is given by

(24). At this point, it appears that there maybe a problem

since a complete determination of Ri, for example, calls

for the complete set of scattering parameters which results
from A and B in cascade, while only S1l, S22, and snszl

have been measured. Examination of (19) shows, however,

that Rt can be determined from this partial information

except for an unknown constant multiplier for each of its
elements (in this case 1/ S21). The same observation holds

for Rd. Comparing this with (24), the experimental proce-

dure does yield the ratios between the elements of T, and

fortunately this is all that is required.2

ZIf de~ked, the remtig factor in T could be obtained, a Part from a

& sign, by the use of (33). However, there is no immediate use for this
information.

To continue, the reflection coefficient WI which obtains

at the fictitious detector plane for error two-port A is

related to the reflection coefficient of the load Tl by

(34)

where3

a = r1Jr22 (35)

b= r12/r22 (36)

c=r21/r22. (37)

Comparing these definitions for a, b, c with (30) and (31)

indicates that b and a/ c have already been determined by

the solution to the quadratic equations. To complete the

determination of the parameters of “error box A“ and

thus effect the calibration of six-port 1, it is sufficient to

determine a. Rearranging (34) one has

wl—b

a= r~(l – wlc/a) ‘
(38)

If J7, is known and different from zero, a is determined by

(38) since the remaining parameters are also known. This

represents the “TSD” solution although the formulation is

somewhat different from what has been previously pub-

lished. To complete the “TSD’ solution the corresponding

parameters of “error box B“ may be readily obtained by

use of (20).

For the “TRL” procedure, 171 is, by hypothesis, un-

known. Before proceeding, it may be useful to recap what

has been accomplished thus far. Apart from the de-

termination of the line parameters, which has no bearing

on the immediate problem, one has obtained b and c/a.

In addition a and J71are connected by (38) but both are as

yet unknown.

Returning to (20), this may be written

where4 a, & y, P22 and d, e, f, g correspond, respectively,

to a, b, c, r22 in R~ and Rt. Premultiplying (39) by R=- 1

and expanding it is easy to show that

and

f– de/a

‘= l–cc/a

d–bf

aa= l–cc/a”

(40)

(41)

(42)

Since b and c/a are already known, and d, e, andj can be

obtained from ratios among the elements of Rt, then y,
~/cY, and aa may be obtained from (40)-(42).

3The motivation in the choice of notation, as in a preceding section,
has been to provide continuity with prior work. However, this creates a
double use of the symbols a, b, c. These symbols refer to (34)–(37) for
the rest of the paper.

4This definition of y is not to be confused with its prior use in the
exponential associated with the delay line!
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For “error box B” the counterpart

written

w2+y

a=~(l+w2&LX)

of (38) may be

(43)

where the reversed signs and interchange between the

ro Ies of ~ and y are due to the reversed direction

associated with “error box B.”

Eliminating 17, between (38) and (43) one has

~/a_ (W, -b)(l + w,p/a)

(W2 + y)(l - w,c/a)
(44)

so that by combining (42) and (44)

F

(w, - b)(l -t w2fl/a)(d- bf)
a?=

(w,+ y)I(l - wlc/a)(l - cc/a)
(45)

and

(d-bf)

a= ;(l–ec/a) “
(46)

Apart from the choice of sign in (45), the requirement

that F1 be known has been eliminated. As a practical

matter, a nominal short continues to be a convenient

chclice for the unknown reflector, although for some ap-

plications it appears that an “open” may provide better

repeatability. In either case, a nominal value for the

argument of the “unknown” reflection is available and

with the help of (38) this permits the proper sign choice to

be made in (45).

At this point, the system has been calibrated in

sufficient detail to permit the measurement of reflection

coefficient, and the S-parameters of reciprocal two-ports.

Returning to Fig. 2, it easily follows from (38) that the

refkction coefficient 171at the left measurement plane is

given by

r,=
wl—b

(47)
—cwl+a

while a similar expression for 172may be obtained from

(43). This capability now permits the evaluation of two-

ports in the manner described in the preceding section for

the “fictitious” ones by simply replacing w ~ and WJ by r ~

and rz in (14).

III order to measure the properties of nonreciprocal

two.ports, and power, some additional theory is required.

Referring to Fig. 5, for clarity, the reference planes at the

input and output of error Ibex A will be relabeled 1, 2 as

shown. The wave amplitudes az, bz at measurement plane

2 are expressed in terms of al, bl at the detector plane by

where

(1——
)‘a-’ = r,,(al-- bc) - c ~ b “

The net power output from error box ,4 is given by

P= Ib,f’(1 – lr212)

(48)

(49)

(50)

991

I WI

Fig. 5. Itis convenient to redefine certain parameters associated with
“error box” A as shown here.

where, with allowance for the change in notation, ~2 may

be obtained from (47), while by use of (48) and (49)

,b212= la,(a - CW,)12

/r**(a - bc)l’ “
(51)1

Substituting (47) and (51) into (50), and noting [5] that

/all*= lb~12sP,, yields

Pdla–cw112
P=

lr2J21a - bc12 (’- = 2, ’52)

The only system parameter which is undetermined at this

point is [r221. It may be found by observing the system

response Pd and WI with P indicated by a “standard”

power meter. After this has been done, the power deliv-

ered to other terminations may be found by use of (52).

Moreover, by a simple extension, laz12 may also be ob-

tained.

As explained in [10] the evaluation of a nonreciprocal

two-port calls for measurement of the ratio of the incident

waves at the two-port, as well as the reflection

coefficients. Since for the “thru” connection the powers at

the measurement planes are the same (except for a sign

reversal), taking the ratio of (52) to a similar expression

for error two-port B yields the ratio Ir221/jp221. This

suffices for a determination of the ratio of the incident

wave amplitudes, which in turn yields IS121 and ]S121 of

the nonreciprocal two-port. If the individual phases are

also required, the method may be further developed along

the lines described in [10].

V. THE PROBLEM OF ROOT CHOICE

Comparison of (30) and (31) with (35)–(37) indicates

that the two roots of either quadratic are a/c and b.

Another possibility, which must be ccmsidered, is that one

of the roots is equal to both a/c and b. The latter,

however, requires a= bc. This, in turn, is only possible if

for error box,4, S,2S21 = O which obviously cannot be true

for a practical measurement system. Thus the two roots

a/c and b are distinct.

Next, it is useful to consider the ratio of the absolute

values of the two roots, lb\/]a/cl = lbcl/lal. Provided that

[bcl/lal <1, then Ibl < la/cl and this will serve as a basis

for root choice. TO demonstrate that this is ordinarily the

case, it is convenient to expand (19),

(bl = r12 ~ a2+ b2’
r12 )/

(

r21
\

al = r22 I—a2+b2 .
r22 )

(53)

(54)
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In (53), rlz may be considered a scale factor while rll/r12

is a measure of how tightly b ~ is coupled to az as com-

pared to b2. A similar observation holds for (54).

Now, in most measurement systems, including the six-

port, it is desirable to have one response nominally pro-

portional to the wave amplitude bz incident upon the item

under test. This calls for Ir21/ rzzl <<1. In the case of the

four-port reflectometer, it is further required that the

remaining response be nominally proportional to az which

requires Ir, ~/ r121>>1. For the six-port, however, Ir, ~/rlJ -

1 is more typical. In any event, except for gross departures

from the usual design objectives, one has

(55)

which requires

lbl<la/cl. (56)

An alternative, and in principle more definitive, test

may be obtained from (32). Solving (30) and (31) for

r,, / r21, and rlJ rzz, in terms of the ty,and substituting in

(32) gives,

(57)

where

R=~~ (58)

and where the choice of sign depends upon how the root

assignment has been made. The two corresponding values

for e27~,as given by (57), however, are reciprocals of each

other. Thus as an alternative criterion, the root assignment

should be made such that Ie2y’1<1.

As noted, this is in theory a more definitive test, how-

ever, since the difference between Ie2y[l and unity is usu-

ally small, it is possible for measurement error to mask

this effect unless good quality power detectors are used.

Finally, the argument of ezy~, as obtained from (57),

depends upon the root assignment. If the line length

differs in a known direction from the design center of a

quarter wavelength, this could also serve as a basis for

root choice.

Ordinarily, however, the first criterion is more than

adequate in a practical application.

VI. SUMMARY

The foregoing provides the theoretical basis for a

calibration procedure which promises to have a major

impact upon the microwave art. In particular, the long-

standing role of the short or open as an “impedance

standard,” if not obsolete, at least needs to be reexamined.
This is in agreement with the observation by Allred [11]

that “open and short circuits are not standards in the true

sense.” As brought out in a companion paper [12], the

TRL technique, quite possibly, represents the best experi-

mental method for evaluating a short or an open which

has yet been devised. Moreover, the values thus obtained

provide a useful monitor of the system performance.

Instead of a collection of offset shorts, or the single

short in conjunction with sliding terminations, which have

characterized the prior art, the only items now required to

calibrate the measurement system are a section of the

transmission line or waveguide in which the measure-

ments are to be made (which implicitly defines ZO), plus a

termination for which a nominal value for the argument

of the reflection is known. The method is thus im-

mediately applicable to the solid dielectric line.

While the method is, in principle, equally applicable to

a dual four-port reflectometer, the latter has found but

limited application to date because of the requirement, for

duplicating the complex ratio detector, which is usually a

costly item, or alternatively, the need for an elaborate

switching scheme and its associated errors. The advan-

tages of the TRL procedure are thus more readily realized

in the six-port environment; this represents another

advantage of the six-port technique.
For a report on the performance of a measuring system

in which this calibration technique plays a key role, the

reader is referred to a companion paper [12]. While the

effect of residual imperfections, such as line reflections,

remains to be evaluated, the cited results [12] leave little

room for doubt that the method is capable of high ac-

curacy !

This calibration technique may also be applied to the

problem of adapter evaluation. Returning again to Fig. 4,

let error boxes A, B represent a pair of adapters. If the

entire assembly of Fig. 4 is inserted between the measure-

b (Fig. 4) may bement planes of Fig. 3, then al, bl, a2, z

measured by the six-ports where it is assumed the calibra-

tion has already been completed. The procedure thus calls

for a repeat of the TRL technique with the adapters in

place and yields the adapter parameters in place of those

of a fictitious error box.

Finally, it maybe noted that while TRL maybe consid-

ered an extension of TSD, another variant of TSD,

namely “super TSD,” also exists [13]. The latter, however,

was developed to take account of a crosstalk problem

which, for all practical purposes, is nonexistent in the

six-port environment.
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[2]

[3]
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Performance of a Dual Six-Port Automatic
Network Analyzer

CLETUS A. HOER, MEMBER, IEEE

Ahwet-lrritfal results of the performance of an experimental dual

sfx-port automatfc network ssmdymr operating in tbe 2-lS-GHZ range with

thermistor-type power detectors are given. The imprecision in measurfng

reflection coefficients of one-port devices, or the scattering parameters of

two-prt devices is 4 X 10-s, excluding eosmector repeatability. At 3 Gl@

the imprecision in measuring attmmation varies from 0.0003 dB at low

vafues of attenuation to 0.15 dll at 60 dB. The systematic error in

measuring attenuation appears to be Iesa than the imprecision. ‘Ilw sys-

tematic error in measuring reflection coefficient appears to be less than

0,0004. Additional systematic errors caused by changes in the calibration

coostmts over a 20-week period were observed to be less than 0.003 dB in

attenuation and less than 0.002 in reflection coefficient.

I. INTRODUCTION

A N EXPERIMENTAlL automatic network analyzer

~ (ANA) incorporating two six-port reflectometers

has been constructed at NBS for measuring the network

parameters of one-port and two-port devices from 2-18

GHz. The precision, accuri~cy, and stability of the ANA

are now being investigatecl. Results obtained so far are

summarized in this paper.

II. SYSTEM DESCRIPTION

A block diagram of the dual six-port ANA is shown in

Fig. 1. Measurements of the reflection coefficient r of

one-port devices are made by connecting the termination

to eil,her six-port reference plane. The network parameters

of a two-port device are measured by inserting the two-

port between the two six-port reflectometers. The theory

of operation and a description of the basic system have

already been published [1].

Manuscript reeeived May 8, 1979; revised September 5, 1979. This
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The author is with the Electromagnetic Technology Divisio~ National
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Fig. 1. Block diagram of a dual six-port automatic network analyzer,
where P indicates power detector. When a termination is connected to
either measurement plane, p, or p2 becmmes the usual reflection
coefficient T1 or r~ of the termination.

The accuracy of a six-port measurement is primarily a

function of the quality of the connectors, quality of the

standard transmission line used in the calibration, and of

the resolution, stability, and linearity of the four sidearm

power detectors. Greatest accuracy has been obtained

with NBS Type IV power meters [2] using thermistor type

power detectors. The thermistor detectors are housed in

an aluminum block whose temperature is held constant to

0.01 ‘C. The present system has a phase-locked source

whose output power is externally leveled. Connectors at

the measurement planes are GPC-7. The system is con-

trolled by a programmable calculator.

III. CALIBRATION TECmQIQUES

The technique used to calibrate the dual six-port ANA
is the “thru-reflect-line” (TRL) technique [4] augmented

by including a nominal 10-dB pad in the set of measure-

ments. The steps in the calibration are shown in Fig. 2

and outlined below.
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