

- 1. Consider the transmission line system shown in the figure above.
 - (a) Find the input impedance Z_{in}.
 - (b) Find the current drawn from the generator
 - (c) Find the time-average power delivered to the load

2. A lossless transmission line of characteristic impedance 75 Ω is terminated by some complex load, Z_L. If the distance from the load to the location of the first impedance minimum is measured to be .304 λ and the impedance at that point is 22.5 Ω , using the Smith Chart find:

- a) The SWR.
- b) The load impedance, $Z_{L.}$
- c) The reflection coefficient, $\overline{\Gamma}_{L}$.
- d) Distance to the first voltage maximum.
- e) Value of the line impedance at this point.
- f) The distance to the closest point to the load where the real part of the line impedance is 75 Ω .
- g) Is the impedance at the point located in part f inductive or capacitive?

- 3. Given the lossless transmission line shown above,
 - (a) Find the reflection coefficient Γ_R and the standing wave ratio (SWR) for this loaded transmission line.
 - (b) Sketch the standing wave patterns for the magnitude of the voltage along this transmission line in terms of V_R .
 - (c) Determine the impedance at the input of this loaded transmission line.
 - (d) If a sinusoidal generator $10 \ge 0^{\circ}$ V, which has a source impedance of 100Ω is connected to this loaded transmission line, what is the time average power delivered to the 75- Ω load.

4. Answer the following questions using a Smith chart. Clearly identify significant features on the chart. A transmission line with characteristic impedance 50 Ω is terminated by a load of impedance $Z_r = 40 + j50 \Omega$.

- (a) What is the SWR?
- (b) What is the phase of Γ_r ?
- (c) What is the normalized admittance at the load?
- (d) What is the normalized admittance at $d = 12.2\lambda$ toward the generator from the load?
- (e) What is the phase of Γ at $d = 12.2\lambda$ toward the generator from the load?
- (f) What is the shortest distance from the load at which a short-circuited stub could be attached to achieve an impedance match?
- (g) What would the normalized input admittance of the stub be?

5. For the above figure, let $\overline{V}_s = 1$ volt, $Z_s = 30 \Omega$, and $Z_R = 40 \Omega$.

- (a) What is the impedance at the input of the line (z = -d)?
- (b) What is the phasor current through Z_s ?
- (c) What is the phasor current through Z_R ?
- (d) What is the time-average power delivered to the load ?