ECE 451 Advanced Microwave Measurements

Error Correction

Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu

Network Analyzer

Source provides RF/microwave signal and consists of high-frequency circuitry with internal impedance of 50 Ω .

Test set consists of couplers used to separate signals. There are also power dividers, switches all of which must operate at the RF/microwave frequency of interest.

Signals REF, A, & B are routed to analyzer which down-converts RF signals to intermediate frequency.

Signals are then amplified using low-frequency amplifiers and detected using low-frequency detectors.

Display shows ratios B/REF or A/REF for S_{11} , S_{21} in magnitude and/or phase format

8510C Network Analyzer

Two-Port Measurement

Forward

Two-Port Measurement

Reverse

Two-Port Measurement

In general, the measured S_{11} , S_{12} , S_{21} and S_{22} are not the parameters of the actual DUT

Need to remove the effects of X_1 and X_2

One-Port Measurement

The system of cables, couplers, etc... represents a 2-port and must be de-embedded in order to obtain the actual S_{11} of the unknown $\Rightarrow S_{11a}$

One-Port Measurement

Assume that the network analyzer is perfectly matched. Then,

$$S_{11m} = \frac{b_1}{a_1} = S_{11c} + \frac{S_{12c}S_{21c}S_{11a}}{1 - S_{22c}S_{11a}}$$

All quantities are complex and frequency-dependent!

If we assume that the cables and couplers are a perfect 50- Ω system, then $S_{11c}=S_{22c}=0$. We have a <u>one-term error model.</u>

$$S_{11m} = S_{12c} S_{21c} S_{11a} = T S_{11a}$$

where $T = S_{12c}S_{21c}$

T is not known. To determine *T*, we first measure a short since for a short, $S_{11a}^{(short)} = -1$

We get
$$S_{11m}^{(short)} = TS_{11a}^{(short)} = -T$$

known
LINOIS

Electrical and Computer Engineering University of Illinois at Urbana-Champaign

Once T is known, we can then measure the DUT

 $S_{11m}^{(DUT)} = TS_{11a}^{(DUT)}$

From which

University of Illinois at Urbana-Champaign

Practical Observations:

Since the correction involves a simple complex division, we can do the following

$$\left|S_{11a}^{(DUT)}\right| = \frac{\left|S_{11m}^{(DUT)}\right|}{\left|S_{11m}^{(short)}\right|} \quad \text{and} \quad \angle S_{11a}^{(DUT)} = \angle S_{11m}^{(DUT)} - \angle S_{11m}^{(short)} \pm 180^{\circ}$$

E_{DF}: Directivity of couplers (leak through test ports)
 E_{RF}: reflection tracking error (signal path tracking error)
 E_{SF}: Source match error

$$S_{11m} = \Gamma_{in} = S_{11c} + \frac{S_{12c}S_{21c}S_{11a}}{1 - S_{22c}S_{11a}} \quad \text{or} \quad S_{11m} = E_{DF} + \frac{E_{RF}S_{11a}}{1 - E_{SF}S_{11a}}$$

<u>Step 1:</u>

Use matched load ($Z_0 = 50 \Omega$) as DUT $\rightarrow S_{11a} = 0$

$$S_{11m}^{(load)} = E_{DF} = A$$
 (1)

<u>Step 2:</u>

Use a perfect short as DUT $\rightarrow S_{11a} = -1$

$$S_{11m}^{(short)} = E_{DF} - \frac{E_{RF}}{1 + E_{SF}} = B \qquad (2)$$

<u>Step 3:</u>

Use a perfect open as DUT $\rightarrow S_{11a} = +1$

$$S_{11m}^{(open)} = E_{DF} + \frac{E_{RF}}{1 - E_{SF}} = C \quad (3)$$

Combining (1), (2), and (3) gives E_{SF} , E_{RF} and E_{DF}

$$\begin{split} E_{DF} &= S_{11m}^{(load)} = A \\ E_{SF} &= \frac{B + C - 2A}{C - B} = \frac{S_{11m}^{(short)} + S_{11m}^{(open)} - 2S_{11m}^{(load)}}{S_{11m}^{(open)} - S_{11m}^{(short)}} \\ E_{RF} &= \frac{-2(B - A)(C - A)}{C - B} = \frac{-2(S_{11m}^{(short)} - S_{11m}^{(load)})(S_{11m}^{(open)} - S_{11m}^{(load)})}{S_{11m}^{(open)} - S_{11m}^{(short)}} \end{split}$$

<u>Step 4</u>: Measuring the unknown DUT This is the actual $S_{II} \rightarrow S_{11a}^{(DUT)} = \frac{S_{11m}^{(DUT)} - E_{DF}}{E_{RF} + E_{SF} \left[S_{11m}^{(DUT)} - E_{DF} \right]}$

Alternative Calibration Standards

At very high frequencies, it is difficult to make a good short, open or matched termination. We need to find alternative standards for calibration.

Offset Short

TL of length *l* terminated with a short

Offset Short Standard

At z=0,
$$\Gamma = \Gamma_L$$

At z=-l, $\Gamma(-l) = \Gamma_L e^{-2j\beta l}$
Since $\Gamma_L = -1$, $\Gamma(-l) = \Gamma_{in} = -e^{-2j\beta l} = e^{j\left(\pi - \frac{4\pi l}{\lambda}\right)}$
 $\Gamma_{in} = e^{j\theta}$ where $\theta = \pi \left(1 - \frac{4l}{\lambda}\right)$

Therefore, when calibrating with an offset short, we use: $S_{11a}^{(offset short)} = e^{j\theta}$

where θ is known:

Offset Short Restriction

The offset short will only work if the frequency range is such that $0 < l < \lambda/2$

This corresponds to a frequency range of

where v is the propagation velocity in the line.

Shielded Open Standard

The shielded open can be modeled as a controlled capacitor.

For a system with reference impedance of Z_o , the associated reflection coefficient is: $\Gamma_{in} = \frac{1/j\omega C - Z_o}{1/j\omega C + Z_o} = \frac{1 - j\omega CZ_o}{1 + j\omega CZ_o} = \frac{1 - ja}{1 + ja}$ with $a = \omega CZ_o$ $\Gamma_{in} = e^{-2jtan^{-1}a}$

So, for shielded open, we use $S_{11a}^{(shielded open)} = e^{-2jtan^{-1}a}$

Electrical and Computer Engineering University of Illinois at Urbana-Champaign

Sliding Load

<u>Motivation:</u> Need to accurately measure the actual directivity error of the system

<u>Observation</u>: If termination is imperfect, then the measured directivity is the vector sum of the actual directivity and the reflection coefficient of the load.

Sliding Load

With the sliding load, a small Γ is willfully introduced and varied in terms of its phase.

By sliding the load at a given frequency point, a circle is defined about the tip of the directivity vector.

We find the best circle that fits the measured S_{11} . The center of that circle is the tip of the actual (desired) directivity vector.

Γ.

 Γ_{i}

Alternate Combinations

Matched Load
Offset Short
Short

Matched Load

Short

Shielded open

Matched LoadOffset Short

Shielded open

Sliding Load
Offset Short
Short

Sliding Load

Short

Shielded open

Sliding Load

Offset Short

Shielded open

Calibration consists of determining the iand o terms by placing known standards as the a terms.

Calibration Stage: Reflection/Port 1

Placing open, short and load as standards (S_{11a}) in port 1 yields

$$S_{11m}^{(op)} = S_{11i} + \frac{S_{21i}S_{12i}}{e^{j\beta} - S_{21i}} \qquad S_{11m}^{(sh)} = S_{11i} - \frac{S_{21i}S_{12i}}{1 + S_{21i}} \qquad S_{11m}^{(ld)} = S_{11i}$$

Calibration Stage: Reflection/Port 1

The system is simultaneously solved to give $S_{11i} = S_{11m}^{(ld)}$

$$\begin{split} S_{22i} &= \frac{e^{j\beta} \left[S_{11m}^{(op)} - S_{11m}^{(ld)} \right] - \left[S_{11m}^{(ld)} - S_{11m}^{(sh)} \right]}{S_{11m}^{(op)} - S_{11m}^{(sh)}} \\ S_{12i}S_{21i} &= \frac{\left(1 + e^{j\beta} \right) \left[S_{11m}^{(op)} - S_{11m}^{(ld)} \right] \left[S_{11m}^{(sh)} - S_{11m}^{(ld)} \right]}{S_{11m}^{(sh)} - S_{11m}^{(op)}} \end{split}$$

Calibration Stage: Reflection/Port 2

Same principle can be applied to port 2 to give

$$S_{11o} = S_{22m}^{(ld)} \qquad S_{22o} = \frac{e^{j\beta} \left[S_{22m}^{(op)} - S_{22m}^{(ld)} \right] - \left[S_{22m}^{(ld)} - S_{22m}^{(sh)} \right]}{S_{22m}^{(op)} - S_{22m}^{(sh)}} \qquad (1 + e^{j\beta}) \left[S_{2m}^{(op)} - S_{2m}^{(ld)} \right] \left[S_{2m}^{(sh)} - S_{22m}^{(ld)} \right]$$

$$S_{12o}S_{21o} = \frac{(1+e^{JP})[S_{22m}^{(op)} - S_{22m}^{(ur)}][S_{22m}^{(sh)} - S_{22m}^{(ur)}]}{S_{22m}^{(sh)} - S_{22m}^{(op)}}$$

Calibration Stage: Transmission

Next, connect the two ports together for transmission calibration $S_{21a} = S_{12a} = I$

$$S_{21m}^{(thr)} = \frac{S_{21i}S_{12o}}{1 - S_{22i}S_{22o}}$$

$$S_{12m}^{(thr)} = \frac{S_{12i}S_{21o}}{1 - S_{22i}S_{22o}}$$

Measurement Stage а a_{2} S_{21m} S_{12o} \hat{S}_{21i} S_{21a} S_{22a} / S_{22i} S_{IIa} (S₂₂₀ $S_{11o}^{},$ S_{IIi} *S*_{12a} S_{21o} S_{12i} S_{11m} a a_3 OUTPUT PORT UNKNOWN INPUT PORT

Insert unknown and provide unit reference signal at input

$$a_{1} = S_{21i} + S_{22i}a_{4} \qquad a_{4} = S_{11a}a_{1} + S_{12a}a_{3}$$

$$a_{3} = S_{22o}a_{2} \qquad a_{2} = S_{21a}a_{1} + S_{22a}a_{3}$$

$$S_{11m} = S_{11i} + S_{12i}a_{4}$$

$$S_{21m} = S_{12o}a_{2}$$

Insert unknown and provide unit reference signal at port 2

$$b_{1} = S_{22i}b_{4}$$

$$b_{4} = S_{11a}b_{1} + S_{12a}b_{3}$$

$$b_{3} = S_{22o}b_{2} + S_{12o}$$

$$b_{2} = S_{21a}b_{1} + S_{22a}b_{3}$$

$$b_{2} = S_{21a}b_{1} + S_{22a}b_{3}$$

$$S_{12m} = S_{12i}b_{4}$$

Measurement Stage

Solve for the b's

$$b_1 = \frac{S_{22i} S_{12m}}{S_{12i}}$$

$$b_{3} = S_{22o} \left[\frac{S_{22m} - S_{11o}}{S_{12o}} \right] + S_{21o}$$

$$b_2 = \frac{S_{22m} - S_{11o}}{S_{12o}}$$

$$b_4 = \frac{S_{21m}}{S_{12i}}$$

8-Term Error Model - Solution

8-Term Error Model - Solution

$$D = \left[1 + \frac{S_{22i}\left(S_{11m} - S_{11i}\right)}{S_{21i}S_{12o}}\right] \left[1 + \frac{S_{22o}\left(S_{22m} - S_{11o}\right)}{S_{12o}S_{21o}}\right] - S_{22i}S_{22o}\frac{S_{21m}}{S_{21i}S_{12o}}\frac{S_{12m}}{S_{21o}S_{12i}}$$

Reference

[1]. W. Kruppa and K. F. Sodomsky, "An Explicit Solution for the Scattering Parameters of a Linear Two-Port Measured with an Imperfect Test Set," IEEE Transactions on Microwave Theory and Techniques, vol. 19, pp. 122-123, January 1971

Forward Mode

EGETILLINUIS Electrical and Computer Engineering University of Illinois at Urbana-Champaign

