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RC Network

°+ AW +o
A is the steady-state gain of the A= ‘\’/((]f))
network; P P

f =
JI+(F/1,) >~ 27RC

The gain falls to 0.707 of its low-frequency value at the
frequency f. f.is the upper 3-dB frequency or the 3-dB
bandwidth of the RC network.
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RC Network
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RC Network
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Rule of thumb: A 1-ns pulse requires a circuit with
a 3-dB bandwidth of the order of 2 GHz.
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Frequency Dependence of Lumped Circuit Models

— At higher frequencies, a lumped circuit model is no longer
accurate for interconnects and one must use a distributed

model

— Transition frequency depends on the dimensions and relative
magnitude of the interconnect parameters.
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Lumped Circuit or Transmission Line?

 Determine frequency or bandwidth of signal

— RF/Microwave: f= operating frequency
— Digital: f=0.35/t,

 Determine the propagation velocity and wavelength
— Material medium v=c/(g)"?
— Obtain wavelength A=v/f

« Compare wavelenth with feature size
— If A>>d, use lumped circuit: L= L* length, C,,;= C* length
— If A= 10d or A<10d, use transmission-line model
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Frequency Dependence of Lumped Circuit Models

Level Dimension Frequency Edge rate
PCB line 10 in > 55 MHz <'Tns
Package |l in > 400 MHz <0.9 ns
VLSI int* 100 um > 8 GHz <50 ps

* Using RC criterion for distributed effect
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Modeling Interconnections
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Intersymbol Interference (ISI)

* Signal launched on a transmission line can be
affected by previous signals as result of reflections

* ISI can be a major concern especially if the signal
delay is smaller than twice the time of flight

* ISI can have devastating effects

* Noise must be allowed to settled before next signal
is sent
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Intersymbol Interference

Volts Ideal waveform beginning transistion
from low to high with no noise on the bus

¥

Timing dlfference

due to ISI —>| -—
|

1
: Different starting point due to ISI
|
|

Waveform beginning transition from low to high
with unsettled noise on the bus
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Intersymbol Interference and Signal Integrity

Probe point

30 ohms Z0 = 65 ohms /
A% @—Wﬁ—

200 MHz switching on above bus
400 MHz switching on above bus

IR /

Ideal 400 MHz waveform
2 Time
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Minimizing ISI

* Minimize reflections on the bus by avoiding
impedance discontinuities

* Minimize stub lengths and large parasitics from
package sockets or connectors

* Keep interconnects as short as possible (minimize
delay)

e Minimize crosstalk effects
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Jitter Definition

Jitter is difference in time between when an event
was ideally to occur and when it actually did occur.

°* Timing uncertainties in digital transmission
systems

* Utmost importance because timing
uncertainties cause bit errors

°* There are different types of jitter
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Jitter Characteristics

« Jitter is a signal timing deviation referenced to a

recovered clock from the recovered bit stream

 Measured in Unit Intervals and captured visually with

eye diagrams

* Two types of jitter
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— Deterministic (hon Gaussian)
— Random

The total jitter (TJ) is the sum of the random (RJ) and
deterministic jitter(DJ)
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Types of Jitter

® Deterministic Jitter (DD]J)
» Data-Dependent Jitter (DD]J)
»Periodic Jitter (P])
»Bounded Uncorrelated Jitter (BUJ)

® Random Jitter (R])
» Gaussian Jitter
> Higher-Order Jitter
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Jitter Effects

Bandwidth Limitations

» Cause intersymbol interference (ISI)

» ISI occurs if time required by signal to completely
charge is longer than bit interval

» Amount of ISl is function of channel and data
content of signal

Oscillator Phase Noise

» Present in reference clocks or high-speed clocks

» In PLL based clocks, phase noise can be
amplified
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Eye Diagram
An eye diagram is a time-folded representation of a
signal that carries digital information

I Ideal sampling instant

Voltage

—
Relative bit time

[
[
T —
[ Unit interval

\ Significant events /

Eye is horizontally centered on the ideal sampling instant
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Eye Diagram
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Eye Diagram Measurements

Rise/fall slope / Eye top

- ‘
< Best time to sample
- center of the eye
Relative bit I Time of significant events
time i.e., edges
TCross1 TCrossZ
~ere
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Eye Diagram

® Unit interval (UI) of a bit sequence is typically
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independent of the waveform sampling interval
of the measurement instrument.

»> Waveform sampling interval must be no more than
one half the unit interval to avoid aliasing

» Rule of thumb for eye diagrams is to sample 5 to 10
times the bit rate

» For 2.5 Gb/s, the sampling rate should be 20
GSamples/s

Large eye openings ensure that the receiving
device can reliably decide between high and low
logic states even when the decision threshold
fluctuates or the decision time instant varies.
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Eye Diagram Measurements
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Reference Levels
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Eye Height

Eye Height is the measuremnt of the eye height in
volts

Eye Helght = (:uPTop o 3GPTop ) o (:uPBase T 3GPBase )

HpTop : mean value of eye top

GPTop : standard deviation of eye top

Hppase : mean value of cye base

Oppase : standard deviation of eye base

ECE 451 — Jose Schutt-Aine 23

cor
Electrical and Computer Engineering
University of Illinois at Urbana-Champaign



Eye Width

Eye Widthis the measuremnt of the eye width in
seconds

Eye Width = (lu’rCrossz o 3GTCrossz ) o (luTCrossl + 3GTCrossl )

Crossing percentmeasurement is the eye crossing
point expressed as a percentage of the eye height

(/uPCrossl — HpBase )

Crossing Percent = x100%
(IUPTop — Hpgase )
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Measuring Jitter
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Eye Pattern Analysis

Fiber
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Eye Diagrams

* Eye diagrams are a time domain display of digital data
triggered on a particular cycle of the clock. Each period is
repeated and superimposed. Each possible bit sequence
should be generated so that a complete eye diagram can
be made
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Bit Error Ratio

® Bit error ratio (BER) is the fundamental measure
of the overall transmission quality of the system

» A single number that counts how many bits got right
and how many errors were made

> The BER is a measure of the percentage of bits that a
system does not transmit or receive correctly

» Instead of viewing the BER as a percentage, we can
also consider it as a probability for a single bit to be
received in error.

Ng,: Average number of errors
Npi: Number of transmitted bits

I\|Err — |\Ibits ) BER
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Bit Error Rate

® Bit error rate relates the number of errors to the
test time

» Different from bit error ratio

N Nc..: Number of errors
_ Err Err-
BERate = i t: Test time

® Bit error rate can be calculated from bit error
ratio using the data rate

BERate[ Errors} = BER{ Err_ors} - Datarate [%}
S Bits S

For PCI Express, BER=10"12, BERate=0.025 Errors/s
e ILLINOIS
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Bit Error Ratio

Mean Time between Errors as a Function for Multigigabit Data Rates

I N e I N

100 ms 40 ms 20 ms 10 ms 2.5 ms
1s 400ms 200ms 100ms  25ms
10's 4s 2s 1s 250 ms
1.66 min 40 s 20 s 10s 25s
16.67 min 6.67 min  3.33 min 1.67min 255
2.78 h 1.11h 333 min 16.67 min 4.17 min
1.16 d 11.11h 556h  2.78h  41.67 min
11.57d 4.63d  231d 1.16d 6.94 h
3.86 mo 154mo 23.15d 11.57d 2.89d
FFEAN3.17y 127y 7.72mo 3.86mo 28.93d
31.7 y 127y 634y 317y  9.64mo
- ! | [ |

Source: D. Derickson and M. Muller, “Digital Communications Test and Measurement”, Prentice Hall, 2007
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Probe Further

® D. Derickson and M. Muller, “Digital Communications
Test and Measurement”, Prentice Hall, 2007.

¢ Kyung Suk (Dan) Oh and Xingchao (Chuck) Yuan,
High-Speed Signaling: Jitter Modeling, Analysis, and
Budgeting, Prentice Hall, 2012

® Mike Peng Li, Jitter, Noise and Signal Integrity at High-
Speed, Prentice Hall, 2008
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