ECE 451 Advanced Microwave Measurements

Lossy Transmission Lines

Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu

Loss in Transmission Lines

Signal amplitude decreases with distance from the source.

Skin Effect in Lines

Skin Effect in Microstrip

H. A. Wheeler, "Formulas for the skin effect," Proc. IRE, vol. 30, pp. 412-424,1942

Skin Effect in Microstrip

Current density varies as

$$J = J_o e^{-y/\delta} e^{-jy/\delta}$$

Note that the phase of the current density varies as a function of *y*

$$I = \int_{0}^{\infty} J_{o} w e^{-y/\delta} e^{-jy/\delta} dy = \frac{J_{o} w \delta}{1+j}$$
$$\sigma E_{o} = J_{o} \Longrightarrow E_{o} = \frac{J_{o}}{\sigma}$$

The voltage measured over a section of conductor of length *D* is:

$$V = E_o D = \frac{J_o D}{\sigma}$$

Skin Effect in Microstrip

The skin effect impedance is

$$Z_{skin} = \frac{V}{I} = \frac{J_o D}{\sigma} \frac{(1+j)}{J_o w \delta} = \frac{D}{w} (1+j) \sqrt{\pi f \mu \rho}$$

where $\rho = \frac{1}{\sigma}$ is the bulk resistivity of the conductor

$$Z_{skin} = R_{skin} + jX_{skin}$$

with

$$R_{skin} = X_{skin} = \frac{D}{w} \sqrt{\pi f \,\mu \sigma}$$

Skin effect has reactive (inductive) component

Telegraphers Equation: Time Domain

$$-\frac{\partial V}{\partial z} = RI + L\frac{\partial I}{\partial t}$$
$$-\frac{\partial I}{\partial z} = GV + C\frac{\partial V}{\partial t}$$

ECE 451 – Jose Schutt-Aine

Telegraphers Equation: Frequency Domain

$$-\frac{\partial V}{\partial z} = (R + j\omega L)I = ZI$$

$$-\frac{\partial I}{\partial z} = (G + j\omega C)V = YV$$

ECE 451 – Jose Schutt-Aine

Telegraphers Equation: Frequency Domain

$$-\frac{\partial^2 V}{\partial z^2} = (R + j\omega L)(G + j\omega C)V = ZYV = \gamma^2 V$$
$$-\frac{\partial^2 I}{\partial z^2} = (G + j\omega C)(R + j\omega L)I = YZI = \gamma^2 I$$

backward wave

Effects of Losses

- Signal attenuation

- **Dispersion** $\gamma = \alpha(\omega) + j\beta(\omega) = \sqrt{(R + j\omega L)(G + j\omega C)}$

- Rise time degradation

and $G \ll \omega C$

 $\gamma = \alpha + j\beta$

 $\alpha \simeq \frac{1}{2} \left(R \sqrt{\frac{C}{L}} + G \sqrt{\frac{L}{C}} \right)$ $\beta \simeq \omega \sqrt{LC} \quad v_p = \frac{\omega}{\beta} \simeq \frac{1}{\sqrt{LC}}$

ECE 451 – Jose Schutt-Aine

RC Transmission Line

R : series resistance per unit length C : shunt capacitance per unit length

$$Z_{\rm in} = \frac{Rl \, \coth \frac{Rl}{\sqrt{2}} \sqrt{\frac{C\omega}{R}} (1+j)}{\frac{Rl}{\sqrt{2}} \sqrt{\frac{C\omega}{R}} (1+j)}$$

For very high ω , arg(Z_{in}) $\approx 45^{\circ}$

RC Transmission Line

$$Z_{\rm in} = \frac{Rl}{2} + \frac{1}{jCl\omega} = \frac{R_T}{2} + \frac{1}{jC_T\omega}$$

 $R_T = Rl$: total resistance $C_T = Cl$: total capacitance

RC Transmission Line

Pulse Characteristics:

rise time: 100 ps fall time: 100 ps pulse width: 4ns

Line Characteristics

length : 3 mm near end termination: 50 Ω far end termination 65 Ω

Long Cable

100m Category-5 Cable

Short Cable

1m Category-5 Cable

ECE 451 – Jose Schutt-Aine

Category 5 Cable

Resistance and velocity

Cable Loss Model

$$R(f) = R_s * f^p$$

$$v_r = v_{ro} + v_{rs} * f$$

$$Z = R(f) + j\omega L = R_{skin} + j(R_{skin} + \omega L)$$

	$\underline{Z}_{(\Omega)}$	<u>V</u> ro (m/ns)	<u>V_{rs}</u> - (m/ns-GHz)	$\underline{\mathbf{R}}_{\mathbf{S}}$	<u>p</u>	<u>fmax</u> (GHz)
Category 5	100	0.724	-0.165	15.38	0.482	0.2
24-Ga	100	0.678	1.157	29.03	0.593	0.1
Category 3	100	0.705	11.06	12.31	0.473	0.01
SMA	50	0.700	0.113	7.94	0.415	0.2

Lossy TL Simulation

• To simulate lossy TL with resistive loads

No closed form solution
Simplest method is to use IFFT

$$v(t,z) = IFFT \left\{ Ae^{-\alpha z} e^{-j\beta z} + Be^{+\alpha z} e^{+j\beta z} \right\}$$
$$i(t,z) = IFFT \left\{ \frac{1}{Z_o} \left[Ae^{-\alpha z} e^{-j\beta z} + Ae^{+\alpha z} e^{+j\beta z} \right] \right\}$$
$$Z_o = \sqrt{\frac{\left(R + j\omega L\right)}{\left(G + j\omega C\right)}} \qquad \gamma = \alpha + j\beta = \sqrt{\left(R + j\omega L\right)\left(G + j\omega C\right)}$$
$$T = \frac{Z_o}{Z_1 + Z_o}$$
$$A = \frac{TV_s(\omega)}{1 - \Gamma_1 \Gamma_2 e^{-2\gamma l}} \quad B = \Gamma_2 e^{-2\gamma l} A \qquad \Gamma_2 = \frac{Z_2 - Z_o}{Z_2 + Z_o} \qquad \Gamma_1 = \frac{Z_1 - Z_o}{Z_1 + Z_o}$$

ECE 451 – Jose Schutt-Aine

21

Time-Domain Simulations

Pulse Propagation (CAT-5)

ECE 451 – Jose Schutt-Aine

Pulse Propagation (MP/CM)

Pulse Propagation (RG174)

