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Issues

* Frequency and time limitations
* Minimum phase characteristics
* Reality

* Stability

* Causality

® Passivity
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Complex Plane

— An arbitrary network’s transfer function can be
described in terms of its s-domain representation

— sis a complex numbers=oc+ o

— The impedance (or admittance) or transfer
function of networks can be described in the s
domain as

m m-1
as +a, .S +..+aS+3a,

T(S)=
) s"+b _s"+...+bs+Db,
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Transfer Functions
as"+a s"+..+aS+a,

T(S)=
) s"+b _s"+...+bs+Db,

The coefficients a and b are real and the order m of
the numerator is smaller than or equal to the order n
of the denominator

A stable system is one that does not generate signal
on its own.

For a stable network, the roots of the denominator
should have negative real parts

e
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Transfer Functions

The transfer function can also be written in the form

)= 3 (s-2,)(s-2,)..(s-Z,)
T R (5P

Z,, Z,,...L are the zeros of the transfer function

P,, P,,...P,, are the poles of the transfer function

For a stable network, the poles should lie on the left
half of the complex plane
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Fourier Transform Pairs

a,(t): real part of even time-domain function

ai(t): Imaginary part of even time-domain function
a,,(t): real part of odd time-domain function

ai,(t): Imaginary part of odd time-domain function

a(t) — are (t) + jaie (t) + aro (t) + jaio (t)
In the frequency domain accounting for all the components,
we can write:

Age(w): real part of even function in the frequency domain
Ac(w): Imaginary part of even function in the frequency domain
Ago(w): real part of odd function in the frequency domain
A,o(w): Imaginary part of odd function in the frequency domain

A(@) = A (@) + [Ag (@) + A (@) + jAG (@)
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Fourier Transform Pairs

We also have the Fourier-transform-pair relationships:

Time Domain: a(t)= a.,(t) + Ja.(t) + a,t) + Ja, ()
T 1 7 A4
\ \ \J N\

Freg Domain: A(@)= Ag(@)+ jAc (@) + Ay (@) + jAq (@)
B(@)=S (a))[ARE (@) + iAg (@) + A (@) + JAq (a))]
In the time domain, this corresponds to:

b(t) = s(t)*[ (. (t) + 2, 1)+ j (a.(t) +a,(1)) ]
ECE ILLINOIS
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Fourier Transform Pairs

We now impose the restriction that in the time domain,
the function must be real. As a result,

a.(t)=a (t)=0 whichimplies that: A (@)= Ay, (@)=0

The Fourier-transform pair relationship then becomes:

Time Domain: a(t)= a.(t) + a,(t)
T T T
" " "

Freq Domain: A(®)= Ay (®)+ jAq (@)

The frequency-domain relations reduce to:

B( |:ARE "‘ JA|0( )]
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Fourier Transform Pairs

In summary, the general relationship is:
Time Domain: b(t)= b (t) + jb.(t) + b (t) + Jb,(t)
T 7T T NS

\J \J \J YRR
Freq Domain: B(@)= By (@)+ jBg (@) + By (@) + jB (@)

But for a real system:

Time Domain: b(t)= b (t) + + b, (t) +
T 1 "\
\J \J Ny
Freq Domain: B(w)= By (@)+ + + jBo (@)
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Fourier Transform Pairs

So, In summary
Time Domain: b(t)= b, (t) + b,(t)
7 7 T

\J \J \J
Freq Domain: B(w)= B;(®)+ jB, (@)

The real part of the frequency-domain transfer function is
associated with the even part of the time-domain response

The imaginary part of the frequency-domain transfer function
IS associated with the odd part of the time-domain response
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Causallty Violations

O_Z « NON-CAUSAL
Z(f)=R/f + jLo
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Causality Principle

Consider a function h(t)
h(t)=0, t<0

Every function can be considered as the sum of an even function and an odd function

() = h, (t) +h, (1
rg(t)::ég[h(t)+-h(—{)] Even function

h,(t) = %[h(’[) — h(—t)] Odd function

H () h(t), t>0
°()‘{m40,t<o

h, (t) = sgn(t)h, (t)
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Hilbert Transform
h(t) = h, (t) +sgn(t)h, (t)

In frequency domain this becomes
1

—_ *
H(T)=H.(f)~ jr f H.(1) > Imaginary part of
transfer function is related
A to the real part through
H(f):He(f)_JHe(f) the Hilbert transform

I—L(f) IS the Hilbert transform of H_( f)

R(t) = x(t)* ; 1 f X(@) 4,

Tl l—1

~re
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Discrete Hilbert Transform

=2 Imaginary part of transfer function can be recovered from
the real part through the Hilbert transform

> If frequency-domain data is discrete, use discrete Hilbert

Transform (DHT)*
(2 f
— k " Kk even
7Z' —N
H (f ) — — n odd
~ k odd
72- n even

*S. C. Kak, "The Discrete Hilbert Transform", Proceedings of the
IEEE, pp. 585-586, April 1970.
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HT for Via: 1 MHz - 20 GHz

Real(S11) - Via Imag(S11) - Via

Actual is red, HT is blue

Real(S12) - Via Imag(S12) - Via

1 T T T T T
05/\ 1
o 4

300 400 500 600
50 00

Observation: Poor agreement (because frequency range is limited)
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Real Part of S11

B

A
Imag(S12)

Real(S12)

I

1

|

Observation: Good agreement
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Example: 300 Kl-lz 6 GHz

Imaginary Part of S11

. Actual is red, HT is blue
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Microstrip Line S11
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Microstrip Line S21
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Discontinuity S11
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Discontinuity S21
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Linear
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