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Parallel-Plate Waveguide

Maxwell’s Equations = V°E+ o’ ucE =0
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TE Modes

For a parallel-plate waveguide, the plates are infinite in the y-
extent; we need to study the propagation in the z-direction. The
following assumptions are made in the wave equation

:>£:O,but£¢0and£¢0
OX 0z

= Assume E, only

These two conditions define the TE modes and the wave
equation 1s stmplified to read

0’E, O°E
L+ —2= —a)z,ugEy (¥)
OX 0z
~rre
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Phasor Solution

General solution (forward traveling wave)

E,(x,2)=e | Ae” 7 4 Be P |

Atx =0, Ey = 0 which leads to A + B = 0. Therefore,
A = -B = E_/2), where E, is an arbitrary constant

E,(x,2) = E,e”*sin B,x XA[ T e
2 X e—

a is the distance separating the two PEC plates
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Dispersion Relation

Atx=a,E(x,2)=0 =2 E e ’*sinfa=0

This leads to: f.a= mz, where m=1, 2, 3, ...

_mz
a

Py

Moreover, from the differential equation (¥), we get the dispersion
relation

B+ =’ ue = f

M

2
which leadsto g, = \/ W’ e — (—j

a
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Guidance Condition

ﬂz :\/wzﬂg_(%j
a

where m=1, 2, 3 ... Since propagation is to take place in the z
direction, for the wave to propagate, we must have 3,2 > 0, or

%)

w’ 1g >

d

This leads to the following guidance condition which will
Insure wave propagation

m

Ra.ue
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Cutoff Frequency

The cutoff frequency f, is defined to be at the onset of propagation

f-_ M 1=V
fC

© 2aue ’

Each mode is referred to as the TE, A mode. It 1s obvious that
there 1s no TE, mode and the first TE mode 1s the TE, mode.

2a
m

The cutoff frequency is the frequency below which the mode
associated with the index m will not propagate in the waveguide.
Different modes will have different cutoff frequencies.
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Magnetic Field for TE Modes

From VxE =-jouH

X yV z
we have H = _—1 2 0 <
JC(),U X 0z
0 Ey 0
which leads to

H, = P E e *sin B x
o

H = +J—'BX E e cos B x
WH
The magnetic field for TE modes has 2 components
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E & H Fields for TE Modes

X X (]
‘ e :/' :i_a.,: :
~ E
x=0

As can be seen, there is no H, component,
therefore, the TE solution has E,, H, and H, only.

From the dispersion relation, it can be shown that the propagation

vector components satisfy the relations
= psIing, = [ cosd where f1is the angle of incidence of the
propagation vector with the normal to the conductor plates.

cet ILLINOIS
) i 1d Computer Engineering
linois at Urbana-Champaign

1)
University of Il

ECE 451 — Jose Schutt-Aine 9



Phase and Group Velocities

The phase and group velocities are given by

P -
"B, f? and Vv :G_a):C 1-—%
_f—CZ g aﬂz f

E
_ y — 770
e _HX fc2
NE
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Transverse Magnetic (IM) Modes

The magnetic field also satisfies the wave equation:

Maxwell’s Equations = V’H+ o’ usH=0

o°’H, o°H, ©&°H

X X

ox> oy’ oz’

o o O

PH  °H, H,
+ +
ox> oy o7’

*=_w’ ueH,

= -a)z,ugHZ
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TM Modes

For TM modes, we assume

:izo,buti;ﬁOandi;tO
OX 0z

=> Assume H, only

These two conditions define the TM modes and the equations are
simplified to read

82Hy 82Hy )
OX* " 0z° ~-opER,

General solution (forward traveling wave)

H,(x,2)=e 7| Ae P 1 Be P |
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Electric Field for TM Modes

From VxH=-jwcE

X y 1z
weget E :_L 2 0 2
Jos OX 01
0 H, 0
This leads to
E,(X,2)= Lo g | Ae V4 Bet A |

&

EZ (X, Z) = &e_jﬁzz [_Ae_jﬂxx + Be+ jﬂxx]
&
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TM Modes Fields

At x=0, E, = 0 which leads to A = B = H_/2 where H, is an arbitrary
constant. This leads to

— _-/Bz
H,(X,z) =He " cos B,X

E (X,2)= L H, e " cos B X
&

E,(X,2)= 15\ e P sin B x
&

At x =a, E, = 0 which leads to

pa=mrx wherem=0,1, 2,3, ...

o IL LINOIS
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E & H Fields for TM Modes

LA

Mz
po=—=
a
This defines the TM modes which have only H,, E, and E,

components.

The effective guide impedance 1s given by:

E f >

H Ty g2

y

Thv =

The electric field for TM modes has 2 components
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E & H Fields for TM Modes

THE DISPERSION RELATION, GUIDANCE CONDITION
AND CUTOFF EQUATIONS FOR A PARALLEL-PLATE
WAVEGUIDE ARE THE SAME FOR TE AND TM MODES.

This defines the TM modes; each mode 1s referred to as the TM
mode. It can be seen from that m=0 is a valid choice; 1t 1s called the
TM,, or transverse electromagnetic or TEM mode. For this mode
and,
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TEM Mode

B,=0 and B, = B. There are no X variations of the fields within the
waveguide. The TEM mode has a cutoff frequency at DC and 1s
always present in the waveguide.

— _j:BzZ
Hy — Hoe The propagation
[ i /,U i characteristics of the
E =—-H.e Pz = —H_e Iz TEM mode do not
& E

vary with frequency

E, =0

The TEM mode is the fundamental mode on a
parallel-plate waveguide
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Power for TE Modes

Time-Average Poynting Vector <P> = %Re {E x H *}

TE modes

1

(P)= _Re{yEy x| %H, +2Hj]}

2

<P>:%Re{ :

‘2

(P)=12

2oL

o IL LINOIS

‘2

E
12 f3 sin’ ,Bx+xj‘ ‘ ,B cos,BXsm,BX}
WH

EO - 2
B, sin’ f,x
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Power for TM Modes

TM modes

<P>:%Re{[iE +2E,|x¥H, |

<P>=—R { M,B cos’ B X — xj‘H ‘ p,.sin B, Xcosﬁx}

The total time-average power is found by integrating <P>
over the area of interest.
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Waveguide

Maxwell’s Equations = V°E+ o’ usE =0

52 E, 52 = 52 E.
+ + = .
> 2 5 0T HEE,
OX oy 0z

O’E, OE, OE T<'

+ L+ Y = -’ uckE

ox> oy> oz’

0°E, 0°E, O°E,
+ +
ox> oy>  or’

= -’ uck,
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Waveguide

Maxwell’s Equations = V°E+ o’ usE =0

5 E, 52 = 5 E.
+ - =
2 2 5 OTHER,
OX oy 0z

2 2 2 ‘
0’E, &E, OE, T<: RN

+ + =-w" uck — -7
aXZ ay2 822 y

0°E, 0°E, O°E,
+ +
ox> oy>  or

= -’ uck,
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TE Modes

For a waveguide with arbitrary cross section as shown in the

above figure, we assume a plane wave solution and as a first trial,
we set E, = 0. This defines the TE modes.

cH
From VXxE= _'UE’ we have

OE, OF, oH

z _ —_ X = +iBE =—jouH
5 a K 1B,E, =—JouH,
OE. ©OE oH, . .

X _ Z — — E = — H
P 1B,E, =—JouH,
0E, OE, oH, ©OE, ©OE, .

X =y — ——— = jouH,
X oy ot ox oy
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From VxH = jocE, we get
oH
o, Ty _ joweE, N, = jweE,
oy 0z
oH,6 oH,6 . . oH
*——L=JweckE, => - ) H ——-
o ox AR, OX
oH, oH, _,
oX oy

We want to express all quantities in terms of H.

o IL LINOIS
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TE Modes

From (2), we have H , = A in (4) oH, E,
o oy o
Solving for E, E, =— Jwﬁ; oH,
ﬂz —w HE ay
- 7 E 6H .
From (1) H. = P in (5) j'B ———* = JweE
" WL WL OX
—jou oH
E = Z
so that ' B e ox

o IL LINOIS
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TE Modes

LB oM,
y 2 2
ﬂz — UE ay
LB oM,
X_IBZ_a)2 a
, —@ g OX
E.=0

Combining solutions for E, and E, into (3) gives

0°’H, O°H
8)(22 T ayZZ :[1822 —Q)ZIL[E:|HZ
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Rectangular Waveguide

p.. ¢
1<‘Z
y

0’H, 0o°H

8X22 + 8y22 =[,6’22—a)2,ug}Hz

a3 ILLINOIS
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Phasor Solution

General solution (forward traveling wave)

E,(x,2)=e | Ae” 7 4 Be P |

Atx =0, Ey = 0 which leads to A + B = 0. Therefore,
A = -B = E_/2), where E, is an arbitrary constant

E,(x,2) = E,e™*sin B,x XA[ T e
2 X e—

a is the distance separating the two PEC plates
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Dispersion Relation

Atx=a,E/(x,2)=0 =2 E e ’*sinfa=0

This leads to: f.a= mz, where m=1, 2, 3, ...

- mz
a

Py

Moreover, from the differential equation (¥), we get the dispersion
relation

B+ =’ ue = f

msr

2
which leadsto g, = \/ W’ e — (—j

a
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Guidance Condition

ﬂz :\/a)zﬂg—(%j
d

where m=1, 2, 3 ... Since propagation is to take place in the z
direction, for the wave to propagate, we must have 3,2 > 0, or

%)

w’ ls >

d

This leads to the following guidance condition which will
Insure wave propagation

m

Ra.ue
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Cutoff Frequency

The cutoff frequency f, is defined to be at the onset of propagation

fo_ M 1=V
fC

© 2aue ’

Each mode 1s referred to as the TE, A mode. It 1s obvious that
there 1s no TE, mode and the first TE mode 1s the TE, mode.

2a
m

The cutoff frequency is the frequency below which the mode
associated with the index m will not propagate in the waveguide.
Different modes will have different cutoff frequencies.
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Magnetic Field for TE Modes

From VxE =-jouH

X yV z
we have H = _—1 2 0 <
JC(),U X 0z
0 Ey 0
which leads to

H, = P E e *sin B x
o

H = +J—’BX E e cos B x
o

The magnetic field for TE modes has 2 components

ECE 451 — Jose Schutt-Aine
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E & H Fields for TE Modes

X X (]
‘ e :/' :i_a.,: :
~ E
x=0

As can be seen, there is no H, component,
therefore, the TE solution has E,, H, and H, only.

From the dispersion relation, it can be shown that the propagation

vector components satisfy the relations
= psing, f«= [ cosd where f1is the angle of incidence of the
propagation vector with the normal to the conductor plates.
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Phase and Group Velocities

The phase and group velocities are given by

P -
"B, f? and Vv :G_a):C 1-—%
_f_02 g aﬂz f

E
_ y — 770
e _HX fc2
NE
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Transverse Magnetic (IM) Modes

The magnetic field also satisfies the wave equation:

Maxwell’s Equations = V’H+ o’ usH=0

o°’H, o°H, 2 ©&°H

X X

ox> oy’ oz’

v I

OH  °H, OH,
+ +
ox> oy o7’

*=_w’ ueH,

= -a)z,ugHZ
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TM Modes

For TM modes, we assume

:izo,buti;ﬁOandi;tO
OX 0z

=> Assume H, only

These two conditions define the TM modes and the equations are
simplified to read

82Hy 82Hy )
o Her,y

General solution (forward traveling wave)

H,(x,2)=e 7| Ae P 1 Be P |
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Electric Field for TM Modes

From VxH=-jwecE

X y 1z
weget E= L o 0 2
Jos 2 o1
0 H, 0
This leads to
E,(X,2)= P g | Ae V4 Bet A |
wE

EZ (X, Z) = &e_jﬁzz [_Ae_jﬂxx + Be+ jﬂxx]
&
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TM Modes Fields

At x=0, E, = 0 which leads to A = B = H_/2 where H, is an arbitrary
constant. This leads to

— _-/Bz
H,(X,z) =He " cos B,X

E (X,2)= L H, e " cos B X
&

E,(X,2)= 15\ e % sin B x
&

At x =a, E, = 0 which leads to

pBa=mrx wherem=0, 1,2, 3, ...

o IL LINOIS
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E & H Fields for TM Modes

LA

Mz
po=—=
a
This defines the TM modes which have only H,, E, and E,

components.

The effective guide impedance 1s given by:

E f >

H Ty g2

y

Thv =

The electric field for TM modes has 2 components

Electrical and Computer Engineering
University of Illinois at Urbana-Champaign
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E & H Fields for TM Modes

THE DISPERSION RELATION, GUIDANCE CONDITION
AND CUTOFF EQUATIONS FOR A PARALLEL-PLATE
WAVEGUIDE ARE THE SAME FOR TE AND TM MODES.

This defines the TM modes; each mode 1s referred to as the TM
mode. It can be seen from that m=0 is a valid choice; it 1s called the
T™M,, or transverse electromagnetic or TEM mode. For this mode
and,

ECE 451 — Jose Schutt-Aine 39
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TEM Mode

B,=0 and B, = B. There are no X variations of the fields within the
waveguide. The TEM mode has a cutoff frequency at DC and 1s
always present in the waveguide.

— _j:BzZ
Hy — Hoe The propagation
[ i /,U i characteristics of the
E =—-H.e Pz = —H_e ez TEM mode do not
& E

vary with frequency

E, =0

The TEM mode is the fundamental mode on a
parallel-plate waveguide

.l-l\l-
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Power for TE Modes

Time-Average Poynting Vector <P> = %Re {E x H *}

TE modes

1

(P)= _Re{yEy x| %H, +2Hj]}

2

p)- el

‘2

(P)=12

201

o IL LINOIS

‘2

E
2 f3 sin’ ,Bx+xj‘ ‘ ,B cos,BXsm,BX}
WH

EO < 2
B, sin’ f,x

ECE 451 — Jose Schutt-Aine
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Power for TM Modes

TM modes

<P>:%Re{[iE +2E,|x¥H, |

<P>=—R { M,B cos’ B X — xj‘H ‘ p,.sin B, Xcosﬁx}

The total time-average power is found by integrating <P>
over the area of interest.

ECE 451 — Jose Schutt-Aine
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Circular Waveguide - Fields

For a waveguide with arbitrary cross section, it is
known that

0°H, ©o°H

Z 7 2 2
TE Modes 2 + Y. —[,BZ =, ugJHZ (1)
2 2
TM Modes 6E22+6E [,6’ a),ug}E (2)
OX oy’

We first assume TM modes in cylindrical coordinates:

O°E, , 1 0E, 182EZ
o ror r’ o¢’

v y==%ip,

+()/2 +a)2,u5) E =0

.

See Reference [6].
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Circular Waveguide — TM Modes

Solution will be in the form

E,(r.¢)=1(r)g(4)

Which after substitution gives

rd( df 1 dg
o h2 2 T 3
f dr( drj g d¢’ 3)

where h’ =y’ + 0’ us

For equality in (3) to hold, both sides must be equal to the
same constant say n? where 7 is an integer in view of the
azimuthal symmetry since the fields must be periodic in ¢.
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Circular Waveguide — TM Modes

d’g

2

+n°’g=0 (4)

2 2
L L RS PO
dr r dr r

Solution of (4) is of the form
g(¢)=C, cos(ng)+C,sin(ng) (6)
(5) is Bessel’s equation and has solution
f(r)=C,J,(hr)+CyY,(hr) (7

], and Y, are the n'" order Bessel functions of the first and
second kinds respectively

cor
Electrical and Computer Engineering
University of Illinois at Urbana-Champaign
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1

-0.5

o IL LINOIS

Bessel Functions of the First Kind

2‘_ n+/r24)rl) é
C'(n+1)
| NONA00LAA0LAC0
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Circular Waveguide — TM Modes

Y, has singularity at 0 and must consequently be discarded
= C,=0. The general solution then becomes

E, (r.¢)=C,J, (hr)| C,cos(ng)+C,sin(ng) ]|

Since the origin for ¢is arbitrary, the expression can be
written as:

E,(r.¢)=C,J,(hr)cos(ng)
where C, is a constant. The boundary condition E,, = 0
requires that

E,(r.,§)=0forr=a
Solution exists for only discrete values of h such that

J,(ha)=

ECE 451 — Jose Schutt-Aine 47



Circular Waveguide — TM Modes

ha must be a root of the n'* order Bessel function. If we
assume that ¢, is the [ root of ], we can define a set of
eigenvalues h,; for the TM modes so that:

1:nl
P, =

[ root of ], (.)=0
" H._--
l 2405 3832  5.136
2 5520 7016 8417
3 8654 13323 11.620

Each choice of n and |
specifies a particular
solution or mode

n is related to the number of circumferential variations
and [ describes the number of radial variations of the field.

o IL LINOIS
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Circular Waveguide — TM Modes

The propagation constant of the nl? propagating TM mode is:

- —1/2
2 tnl 2
Pra, =| O pE—| -

d

The propagation occurs for A < A 1y, OF f > fa,; Where the
cutoff frequency and wavelength can be found from y=0 as:

2ra _ tnl
At :t— formm = ra e

nl

The other field components can be obtained from E,

a

E =CJ (ti' rjcos(n¢)ejﬁ“'Z

ECE 451 — Jose Schutt-Aine 49
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Circular Waveguide — TE Modes

The solutions for the TE modes can be found in a similar
manner except that we solve for H_(r,¢) to get:

H, (r,¢)=C,J,(hr)cos(ng)

To apply the boundary condition E, ,= 0, we require

tan

oH
“tobelOatr=a
or
A oH
We must have N-V H, = S t=0 at r=a
r

For this, we need the zeros of J,'(u) given by s,,. The
propagation constant, cutoff frequency and wavelength
have the same expressions as in the TM case with £ ;2 s ;.

ECE 451 — Jose Schutt-Aine 50
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Circular Waveguide — TE Modes

The propagation constant of the nl* propagating TE mode is:

ﬂTEm = a)zﬂg_(

I root of | (.)=0

n 1_--

l 3.832 1.841 3.054
2 7.016 5.331 6.706
3 10.173  8.536  9.969

and for TE modes,

Snl

a

:

1/2

From the tables, it can
be seen that the lowest

cutoff frequency is the
TE,; mode.

H =C_J (—”'rjcos(n@e 1z

a
o ILLINOIS
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Circular Waveguide - TE & TM Modes

A
aI?LC
1
TE,,
TE,
0.5 TE.?.I
) TE,,
L >
1 )
Jemw/IeTEL
0.5 - TM()I
T™, ,
1 —
4 a/kc

See Reference [6].

o ILLINOIS
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TE,; Mode in Circular Waveguide

See Reference [1]. H

=0 ILLINOIS
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Modes in Circular Waveguide

See Reference [1]. .
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Example: Circular Waveguide Design

Design an air-filled circular waveguide such that only the
dominant mode will propagate over a bandwidth of 10 GHz.

Solution: the cutoff frequency of the TE,; mode is the lower
bound of the bandwidth.

_1.8412¢
cTE;, 272'3.

f

The next mode is the TM,;; with cutoff frequency:

¢ _2.4049
cTMy; 2 ra
~rre
Electrical {(U;INO{S ECE 451 — Jose Schutt-Aine 55
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Example: Circular Waveguide Design

The BW is the difference between these two frequencies

B C
cTE,, 272'8.

BW = f f (2.4049—1.8412)210GHZ

cTM,,
From which we find a = 0.269 cm

So that

forg, =32.7GHz and f,, =42.76 GHz

ECE 451 — Jose Schutt-Aine 56

cor
Electrical and Computer Engineering
University of Illinois at Urbana-Champaign



Coaxial Waveguide

°* Most common two-conductor transmission system

° Dielectric filling in most microwave applications is
polyethylene or Tetlon

l-fu-
Electrical s {(LLINOIS ECE 451 — Jose Schutt-Aine
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57



Coaxial Waveguide - TEM Mode

* Two-conductor system = Dominant mode is TEM

° Tangential E-field and normal H field must be 0 in
conductor surfaces

E,=0and H =0atr=a,b

ECE 451 — Jose Schutt-Aine 58
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Coaxial Waveguide - TEM Mode

TEM solution can exist only with
E=fE,(r,z) and H=¢H,(r,z)

with no ¢ dependence because of azimuthal symmetry

we get
8H
= joE, > JBH; (r)= joeE. (r)
H H°
—lH +8_ O—>—1H;(r)+a—:0
r or r or

Where propagation in z direction is assumed.
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Coaxial Waveguide - TEM Mode

We get

A . /\H — i3z
H = ¢ie—lﬂz E = rT°77e 15
r

where H  is a constant. No cutoff condition for TEM mode.
The voltage between the two conductors is given by
V(z)=-nH,In(b/a)e
The current in the inner conductor is given by
1(z)=27He "

The characteristic impedance Z is thus given by

In(b/a)
L, =1
27
~rre
Electrical {(U;INO{S ECE 451 — Jose Schutt-Aine 60
University of Illinois at Urbana-Champaign



Coaxial Waveguide — TE and TM Modes

TE and TM modes may also exist in addition to TEM. In a
coaxial line, they are generally undesirable.

For TM modes, we have:
E; (r.¢)= [C3Jn (hr)+C,Y, (hr)}cos(n¢)
For TE modes, we have:
H? (r.¢)=| C,J, (hr)+C.Y, (hr) |cos(ng)
With boundary conditions at r =a, b of
E,(r,¢)=0 for TM modes

oH,
or

=(0 for TE modes
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Coaxial Waveguide — TE and TM Modes
These conditions lead to
3, (ha)Y, (hb)=J, (hb)Y, (ha) for TM modes
3. (ha)Y, (hb)=J. (hb)Y, (ha) for TE modes

Solutions of these transcendental equations determine
the eigenvalues of h for given a, b. As in the circular
waveguide case, the modes for coaxial waveguide are
denoted TE ; and TM_,.
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Coaxial Waveguide — TE and TM Modes

The mode with the lowest cutoff frequency is the TE,,
mode for which the eigenvalue & is approximated as:
2

h=—
a+b

The cutoff frequency and cutoff wavelength are given by

2T

/ICn:T:ﬂ(a+b) and f_ = :

7(a+b)ue
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TM Modes

. - b

Coaxial Waveguide — TE and

See Reference [3]. ™
==
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