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Feedback — Basic Concept
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Feedback and Frequency Dependence

1. The closed-loop transfer function is a function
of frequency

2. The manner in which the loop gain varies
with frequency determines the stability or
instability of the feedback amplifier

3. The frequency at which the phase of the
transfer function is equal to 180° will be
unstable if the magnitude is greater than unity
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Feedback and Stability
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When loop gain A(jw) f(j®) has 180° phase, we
have positive feedback
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Nyquist Plot
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Stability and Pole Location
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Oscillator

e [ i
<

* Closed-Loop Transfer function:

,Where s = jw

 Barkhausen’s criteria for oscillation:
2|BH(jwy)| =1
darg(SH(jwy)) = —180°.

* wq = oscillation-frequency.

ECE 453 — Jose Schutt-Aine

cor
Electrical and Computer Engineering
University of Illinois at Urbana-Champaign




Oscillator Topologies

°* Common-base topology is usually preferred because
» Feedback within transistor is minimized (low Miller)
» External feedback is dominant
» Current gain has little phase shift and is constant with f
* Oscillator built around 2 major requirements:
» Oscillation frequency f,
» Power P, that must be delivered to a load
* Other criteria
» Efficiency
» Spectral purity
» Frequency stability
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BJT — High-Frequency Model
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Common-Collector Colpitts
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Incremental Model
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For Oscillation, we want Z,,, = -Z,, ,,
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Oscillation Criteria

Condition gives
: + : +r+ : — : =0
0Cr . @*CR | °" @'C’Cr R @’CC.R

e

Term in ©* can be neglected. This gives

1
2gm2 Y, T 2gm =0
o' Clp o' CiR, @ C,C,

Gives transconductance to set net resistance to zero

C
w’CCyr+—
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Oscillation Conditions

2. . 1s the trans-conductance needed to support
steady-state oscillations
If ¢, << @C,f and assuming that fis large,

¢, 1

~a)2CCr+
Ems C. R

In terms of the inductor quality factor Q;

WO(C1+C2)+ C 1

gms =
QL CZ Re

o IL LINOIS

llllllllllllllllllllllll

ECE 453 — Jose Schutt-Aine 13



CC-Colpitts - Observation

°* To implement tunable oscillator

» Use variable capacitor in parallel or is series with
inductor

* To extract power from oscillator
» Place resistance in shunt with inductor
» Account for loading effect in analysis and design

1. Oscillation amplitude builds up and v,, increases

2. Transistor moves out of linear range and operation becomes
nonlinear. Transconductance decreases.

3. When transconductance reaches g, ., steady state operation is
achieved.
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Common-Base Colpitts

C;: tuning capacitor
C; & C,: feedback ratio

RFC: RF choke to prevent
power dissipation in R,

Rp is equivalent resistance
of coil L,.

% 1. DEFINITIONS

R, R
Rt:RL”Rp: -

/_-’f(‘-,} % R, RL + Rp
e R =R +r,
R pm— ¢ gi — 1 / Rl.
1 g =1/R
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CB-Colpitts - Incremental Model

\ Vs
} 2

4
L 2
?Ie ¢,
I <+> K T e <+> 15 ?{4/ L K,

g, +5(C,+C,) —sC,

0 _ -ag, —sC, gt+S(C1+CO+Cf)+SLt_ V

Setting the determinant to zero provides the
criterion for the onset of oscillation.
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CB-Colpitts - Oscillation Conditions

Setting the determinant to zero gives.
A(S):gl.+s(Ltgtgi+Ca) (LgC +L gC, Ltclagl.)
$(LC,C,-LCH)=0
Defining C,=C,+C, and C,=C+C,+C,

we get a complex conjugate pair of roots. This
leads to 2 equations for real and imaginary parts
that must be equal to zero separately

Re| A(jo) |=g,-@’L(C,g, +C,g,~Cag,)=0

Im[ A(jo)]|=Lgg, +C,- L (C,C,-C)=0

o II. LINOIS
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CB-Colpitts - Oscillation Conditions

From the equation for the imaginary part, we get

a)z —_ gtgi +S(Ca /Lt)

0 2
CaCb o Ct
or
ot = 1 . 1
? =
L|C,+C, +(CC,I(C+C))| RR[(C,+C,)(C+C)+CG ]
LC tan;crcircuit ) transisl‘o;r and load ’
First term should predominate
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CB-Colpitts - Oscillation Conditions

In that case

L, <RR(C +C,)

1
L|C,+C,+CC,/(C +C,)]

which leads to @’ =

Circuit oscillates at frequency determined by L,
and equivalent capacitance.
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CB-Colpitts - Oscillation Conditions

The solution of the real part using ® =, gives

C,+C, R C, 1
o . =1+ 1+=2 |—-—
Cl Rt Cl a)oLtCI

C, R, C, 1 R C,
o . ~1- + | [+—=|= +— 1+—=
C,+C, R C, ) 1+ (C2 / Cl) R C,

t

For oscillations to start, & of the transistor
should be greater than «, .
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Crystal Oscillator

* Quartz exhibits piezoelectric effect

» Reciprocal relationship between mechanical
deformation and appearance of electrical potential

» Deforming crystal produces voltage
» Applying voltage produces deformation

°* When applied voltage is sinusoidal

» Mechanical oscillations that exhibit resonances at
multiple frequencies

» Extremely high Q that can reach 10° and 10°
» Do not work above 250 MHz
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Crystal Resonator - Circuit Model

R » Lq and C 7 describe mechanical resonance behavior
C,1is capacitance due to external contacting

C

R q

‘* X I

Wt

S r—

I
i
(_

- L ” C » R g describe mechanlcal resonance
- C, is due to external contacting
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Crystal Resonance Frequencies

Admittance from terminals is

1
R,+j| oL, ~1/(aC,)]

Y= joC, + =G+ jB

Resonance condition is expressed by

w,L, —1/(a)OC )

q

R+ [a)OLq —1/(0)0Cq)]2

@,C —

o

=0
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Crystal Resonance Frequencies

Series resonance frequency

Wy = Wy = Wy

1+

2
Rq

CO

2

|

Parallel resonance frequency
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Crystal Oscillator - Example

Crystal is charactetized by L, = 0.1H, R = 2502, C,
= 0.3pF, and C, = 1 pF. Find series and parallel
resonance frequencies and compare them against
the susceptance formula.

R2 R2
fo=ful14 q(q)) S S q[q’) —0.919 MHz

27z,/Lqu_ 2L, |

2 2
fg l—Rq C, _ 1 |G, +C, l—R"
T 2L )| 2x\LCC, | 2
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Voltage Controlled Oscillator

RFC

Varactor diode
exhibits large
change In
capacitance in
response to an
— C; applied bias

Ly voltage

C;

Varactor |
diode

~re
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Voltage Controlled Oscillator

V.o iy hl!

e AWA— —
Zy

T — i
' b
C L

= Viy —1 XCI _i]NXCZ + iBXCI _:BiBX

IN IN

hip +ip X =iy X =0
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Voltage Controlled Oscillator

Finding input impedance

[}’1 Xc1 +Xcz)+X01Xcz (1"',8)]

Z]N
hll + XCI

Re-write as (assuming 4,,>>X,, and B+1 ~ f)

1|1 1 i 1
jo| C G, h,\ o CC,

Using g, = f'hy

g 1
R —__ &m X =
IN 1 a)Z Cl C2 IN ] a)C]N

Negative resistance
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VCO - Resonance Frequency

Cy = oG
C +C,
Resonance frequency follows from condition:
Xy ==X yuracror where X, imacrorn = J1 @yLs _L
. : @, C,
which gives
B P T U S )
o,C, ) jo,| C, C,
Combined resistance
and of varactor diode must
1 1 1 1 1 be equal to or less
f = + 4+ than |R,| to create
L) T L3 C3 C2 C1 sustained oscillations
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Oscillator Phase Noise

°* Most important performance characteristic
» Frequency-domain equivalent of jitter
» Originates from thermal, shot and 1/f noise
» Random variation in phase angle of oscillator
» Affects frequency stability
° Phase noise quantification
» Compare phase noise power to carrier power
» Determine phase noise spectral density
» Can be characterized in time or frequency domain
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Phase Jitter in Time Domain

Phase jitter
V(1) A or Phase noise

N4 T

If the phase varies, the waveform V(t) shifts back and forth
along the time axis and this creates phase jitter
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Oscillator Phase Noise

Oscillator operates as
V(t)=V cos [27zf0t + ¢(t)]
@(1) is a random noise process. The instantaneous
frequency is
L ds
inst 0 272_ dt

Instantaneous frequency variation is

T

Fractional deviation in instantaneous frequency is

of@ __1 d¢@)
/. 2rf, dt

y(t) =
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Phase, Period and CTC Jitter

1
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-1 1 1 1 1 1
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Phase Noise in Spectral Domain

Carrier

! ¥

So(f) Phase Noise

N\

Phase noise appears as sidebands centered around
the carrier frequency
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Phase Noise Specification

Phase noise magnitude is specified relative to the
carrier’s power on a per-hertz basis

P.(f)
PAf

P (f) : phase noise power (in watts)

L(f)=

. _ .
P, :carrier’s power (in watts)

Af : phase noise bandwidth (in hertz)

LN=35)  or L(f)lelogm(S‘D;f)j

So (f) : PSD of phase noise
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Phase Noise to Phase Jitter

Need: convert phase noise measured in the frequency
domain to phase jitter for PLLs, clocks and oscillators

-80
-85
RJ DJ
-80

-85 | 1

-100 F

L(f) (dBc/Hz)

-105 {2k
-110 1

115 F

120 . : -
0 50 100 150 200

Frequency (Hz)

From the phase noise PSD, random jitter and
deterministic jitter can be identified
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Phase Noise Impact on PLL

l Noise/Jitter Noise/Jitter
Input

Phase Low-Pass Output

> . :
Detector Filter > VCO -

1/N counter

{ (Optional)

Phase noise is the key metric for evaluating the
performance of a PLL system
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