#### ECE 453 Wireless Communication Systems

#### **Power Definitions**

Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu



#### **Power Definitions**



- *P<sub>in</sub>*: Power delivered to input of 2-port
- *P*<sub>out</sub>: Power delivered to the load
- *P<sub>avs</sub>*: Power available from the source



#### **Power Gain Definitions**

Operating  
Power Gain
$$G = \frac{\text{Power delivered to load}}{\text{Power delivered to input of 2-port}} = \frac{P_{out}}{P_{in}}$$
Transducer  
Power Gain $G_T = \frac{\text{Power delivered to load}}{\text{Power available from source}} = \frac{P_{out}}{P_{avs}}$ Available  
Power Gain $G_A = \frac{\text{Power available from output}}{\text{Power available from source}} = \frac{P_{avo}}{P_{avs}}$ 



#### **Power Available from a Source**







#### **Transducer Gain with Z-Parameters**



$$G_{T} = 4 \frac{|Z_{21}|^{2} R_{L} R_{S}}{|(Z_{11} + Z_{S})(Z_{22} + Z_{L}) - Z_{12} Z_{21}|^{2}}$$



ECE 453 – Jose Schutt-Aine

The transducer power gain is defined as the power delivered to the load divided by the power available from the source.





#### **Transducer Gain**

**Definition of transducer gain** 

$$G_{T} = \frac{P_{del}}{P_{avs}} = \frac{|b_{2}|^{2} \left(1 - |\Gamma_{L}|^{2}\right)}{|b_{s}|^{2} / \left(1 - |\Gamma_{S}|^{2}\right)}$$

#### In terms of two-port scattering parameters

$$G_{T} = \frac{|S_{21}|^{2} (1 - |\Gamma_{S}|^{2}) (1 - |\Gamma_{L}|^{2})}{|(1 - S_{11}\Gamma_{S}) (1 - S_{22}\Gamma_{L}) - S_{21}S_{12}\Gamma_{S}\Gamma_{L}|^{2}}$$



If we assume that the network is unilateral, then we can neglect  $S_{12}$  and get the unilateral transducer gain for  $S_{12}=0$ .

$$G_{TU} = |S_{21}|^{2} \frac{\left(1 - |\Gamma_{S}|^{2}\right)}{\left|1 - S_{11}\Gamma_{S}\right|^{2}} \frac{\left(1 - |\Gamma_{L}|^{2}\right)}{\left|1 - S_{22}\Gamma_{L}\right|^{2}}$$

The first term  $(|S_{21}|^2)$  depends on the transistor. The other 2 terms depend on the source and the load.





*G<sub>s</sub>* affects the degree of mismatch between the source and the input reflection coefficient of the two-port.





*G<sub>L</sub>* affects the degree of mismatch between the load and the output reflection coefficient of the 2-port.





# *G<sub>o</sub>* depends on the device and bias conditions



Maximum unilateral transducer gain can be accomplished by choosing impedance matching networks such that.





ECE 453 – Jose Schutt-Aine



 $G_{UMAX}(dB) = G_{S\max}(dB) + G_o(dB) + G_{L\max}(dB)$ 

For 
$$\Gamma_s = S_{11}^*$$
,  $G_s$  is a maximum  
For  $|\Gamma_s| = 1$ ,  $G_s$  is 0



### **Dissipated Power** $P_d = \frac{1}{2} \mathbf{a}^{\mathrm{T}} (\mathbf{U} - \mathbf{S}^{\mathrm{T}} \mathbf{S}^*) \mathbf{a}^*$

The dissipation matrix **D** is given by:

 $\mathbf{D} = \mathbf{U} - \mathbf{S}^{\mathrm{T}} \mathbf{S}^{*}$ 

Passivity insures that the system will always be stable provided that it is connected to another passive network

For passivity

- (1) the determinant of D must be  $\geq 0$
- (2) the determinant of the principal minors must be  $\geq 0$



### **Dissipated Power**

## When the dissipation matrix is 0, we have a lossless network

 $S^{T}S^{*} = U$ The S matrix is unitary. For a lossless two-port:

$$|S_{11}|^2 + |S_{21}|^2 = 1$$
  
 $|S_{22}|^2 + |S_{12}|^2 = 1$ 

If in addition the network is reciprocal, then  $S_{12} = S_{21}$  and  $|S_{11}| = |S_{22}| = \sqrt{1 - |S_{12}|^2}$ 

