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Abstract—With the continually increasing operating frequen-
cies, complex high-speed interconnect and package modules
require characterization based on measured/simulated data. Sev-
eral algorithms were recently suggested for macromodeling such
types of data to enable unified transient analysis in the presence
of external network elements. One of the critical issues involved
here is the passivity violations associated with the computed
macromodel. To address this issue, a new passivity enforcement
algorithm is presented in this paper. The proposed method adopts
a global approach for passivity enforcement by ensuring that the
passivity correction at a certain region does not introduce new
passivity violations at other parts of the frequency spectrum. It
also provides an error estimate for the response of the passivity
corrected macromodel.

Index Terms—High-speed interconnects, measured subnet-
works, passive macromodels, positive real system, signal integrity,
system identification, tabulated data.

I. INTRODUCTION

CHARACTERIZATION and simulation of linear sub-
networks based on tabulated data has become a topic

of intense research during the recent years [1]–[21]. The
tabulated data can be obtained either directly from measure-
ments or from rigorous full-wave electromagnetic simulations.
Important applications of such a characterization include
high-speed interconnects, packages, vias, nonuniform trans-
mission lines, on-chip passive components, and high-frequency
microwave devices. Transient simulation of such frequency-de-
pendent tabulated data in the presence of nonlinear devices
is a CPU-intensive process due to the mixed frequency–time
problem. This can be addressed by approximating the tabulated
data by rational functions and subsequently synthesizing a
SPICE-compatible macromodel/netlist from such an approxi-
mation. However, the primary challenge here is to ensure the
passivity of the macromodel. Passivity is an important property
[22]–[25], because stable but nonpassive models may lead to
unstable systems when connected to other passive components.

Several macromodeling and passivity preservation algo-
rithms for tabulated data can be found in the literature [1]–[16].
Algorithms such as the ones based on convex optimization
[15] can guarantee the passivity of the macromodel. However,
they can be CPU intensive (since the associated computational
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complexity is in the range of to , where is the order
of the state–space matrix) and may not be practically feasible.
On the other hand, approaches such as the ones in [1]–[10] are
computationally fast. However, they may not strictly guarantee
the macromodel passivity. Hence, for such class of algorithms
it becomes essential to verify the macromodel passivity and
correct for any passivity violations.

In case of any passivity violations, several algorithms to en-
force passivity were recently proposed [17]–[21]. These algo-
rithms take a local approach for passivity enforcement by at-
tempting to correct passivity violation at a particular region,
without concerning the rest of the frequency spectrum.

One of the major limitations of these algorithms is that any at-
tempt for passivity correction at some frequency point may lead
to new passivity violation at other frequency points. In order to
address this problem, a global passivity enforcing algorithm is
presented in this paper. The new algorithm employs a guaran-
teed search direction for enforcing passivity, such that the cor-
rection for passivity at a certain frequency region does not in-
troduce new regions of passivity violation.

The remainder of the paper is organized as follows. Sections II
and III present the problem formulation and discuss passivity
verification algorithms, respectively. Section IV describes the
proposed passivity enforcement algorithm. Sections V and VI
present computational results and conclusions, respectively.

II. PROBLEM FORMULATION

The tabulated data can be multi-port scattering (S), admit-
tance (Y), impedance (Z), transmission (T), or hybrid (H) pa-
rameters. Without loss of generality, in this paper it is assumed
that the frequency-domain parameter data is given. The ad-
mittance matrix of a -port subnetwork can be written in terms
of a pole-residue formulation as

(1)
where the residues and poles can be real or complex
conjugate pairs, is the total number of poles, and represents
the direct coupling constant. Next, the state–space representa-
tion for (1) can be obtained as [26]–[28]

(2)
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Fig. 1. Illustration of significance of passivity. (a) Stable macromodel. (b) Unstable system (macromodel + load).

Here, , , , ,
, , and is the total number of state

variables. It is to be noted that the poles of the system are con-
tained in matrix and residues in matrix (referred to as the
residue matrix). It should be noted that contains dc coupling
terms, which may not necessarily be present in all networks.
The transfer function of the system relating the input to the
output can be obtained as

(3)

Several methods have been suggested in the literature, which
start with the tabulated data to obtain the macromodel of (2) and
(3) via rational function approximation. While these methods
may generate accurate approximations, the passivity of the re-
sulting macromodel is not guaranteed. However, as mentioned
in the introduction, the loss of passivity can be a serious problem
because transient simulations of a stable but nonpassive macro-
model may encounter artificial oscillations.

On the other hand, a passive macromodel, when terminated
with any arbitrary passive load, always guarantees the stability
of the overall resulting network. To illustrate this point, con-
sider a simple, single-port second-order macromodel shown in
Fig. 1(a). The macromodel is stable but not passive. When this
macromodel is terminated with the passive load [Fig. 1(b)], the
overall network ends up having unstable poles.

Therefore, the challenge here is to ensure passivity of the mul-
tiport macromodel. The conditions for a network with admit-
tance matrix to be passive are [29]–[31]

a) , where “ ” is the complex conjugate
operator.

b) is a positive real (PR) matrix, i.e., the product
for all complex values of

with and any arbitrary vector .
Condition a) is automatically satisfied since the complex

poles/residues of the transfer function are always considered
along with their conjugates, leading to only real coefficients
in rational functions of . However, ensuring condition b)
is not easy. For the practical case of networks with symmetric

admittance matrices, condition b) can also be expressed using
(3) as

Real

for (4)

Equation (4) also implies that all the eigenvalues of
must be greater than zero for [30]. Ensuring (4) could
be a challenging task for macromodels obtained from tabulated
data. Straightforward application of passivity constraints can
lead to a nonlinear optimization problem. Recent approaches
use CPU-efficient formulation by enforcing passivity conditions
for a certain frequency region or on only given (specific) data
points or through some linearized passivity constraints [1]–[10].
Although these algorithms are computationally fast, they do not
guarantee the macromodel passivity. Hence, passivity verifica-
tion and correction becomes crucial for guaranteeing the sta-
bility of transient simulations involving such macromodels and
the rest of the network. The next section discusses the macro-
model passivity verification.

III. PASSIVITY VERIFICATION

The traditional method for macromodel passivity verification
is based on a frequency sweep of eigenvalues of the real part of
the admittance matrix Real . However, this approach
suffers from several drawbacks, such as up to what frequency
to sweep and how fine the sweep should be. In addition, it fails
to identify the exact locations of violation (which are vital for
a successful compensation). In order to address these issues,
the following two theorems are used, which enable systematic
passivity verification without resorting to frequency-sweep.

Theorem 1: The state–space system is passive
if the following Hamiltonian matrix [32] has no imaginary
eigenvalues:

(5)
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The advantage of this theorem is that the formulation of
the Hamiltonian matrix is independent of frequency. Hence, if
no imaginary eigenvalues are found, it automatically implies
that the macromodel is passive. However, using the traditional
method of frequency-sweep of eigenvalues of (defined
in (4)) would have required the sweep from 0 to to detect if
the eigenvalues are negative at any frequency. In addition, while
using the traditional method, there would be no guarantee of
detecting such cases, as it depends on the fineness of the sweep
(interval between frequency points during the sweep).

If the macromodel is nonpassive, it needs to be corrected
(compensated for passivity violation). For a successful and fast
compensation, it is essential to know the exact frequency loca-
tions at which eigenvalues of cross over from a positive
value to a negative value. For this purpose, the following the-
orem [19]–[21], [33] is used.

Theorem 2: The real part of the symmetric admittance matrix
is singular if is an eigenvalue of the corresponding

Hamiltonian matrix , provided is a positive definite
matrix.

Theorem 2 implies that an imaginary eigenvalue of the
Hamiltonian matrix corresponds to the frequency at which

becomes singular (i.e., the macromodel becomes
nonpassive). This information of exact locations where an
eigenvalue of becomes zero is very crucial as its knowl-
edge helps the passivity compensation process. The proof of
Theorem 2 can be found in [7], and a proof of its corollary is
given in the Appendix. The next section describes a new pas-
sivity compensation (correction) algorithm for macromodels
having passivity violations. It is assumed that the macromodel
is asymptotically passive at (i.e., ), which
can be easily ensured using algorithms such as [17].

IV. PASSIVITY ENFORCEMENT

As discussed in the introduction, several algorithms [17]–[21]
were recently proposed to enforce passivity in macromodels
with small violations. However, these algorithms suffer from the
limitation that the passivity violation may be introduced at some
other frequency points while performing correction in a certain
frequency region. In order to overcome this difficulty, a new al-
gorithm is presented in this section. This algorithm employs a
guaranteed search direction for enforcing passivity, such that
the correction for passivity in a certain frequency region does
not introduce new regions of passivity violation. The proposed
method performs compensation by refining only few selected el-
ements of the residue matrix of the state–space system. These
elements are selected from the real part of residues of diagonal
elements of , corresponding to the poles in the vicinity of
passivity violation. The proposed passivity enforcement algo-
rithm consists of the following three steps:

1) determination of passivity violation regions;
2) determination of the magnitude of the maximum vio-

lation in a given nonpassive region;
3) performance of passivity correction by perturbing the

selected residues.

The details of these steps are given in the following subsections.

A. Determination of Passivity Violation Regions

It is known from Theorem 2 that the imaginary eigenvalues
of the Hamiltonian matrix of (5) correspond to the frequency
locations where the Real becomes singular.
However, this information does not tell us anything about the
regions of passivity violation (i.e., the frequency bandwidth in
which an eigenvalue of is negative). In order to deter-
mine the regions of passivity violation, we determine the slope
of eigenvalues of at its singular locations. This is done
as follows.

If is an eigenvalue of and the corresponding right
eigenvector, then we have

(6)

Differentiating this equation with respect to the angular fre-
quency

(7)

Next, multiplying (7) by the left eigenvector of

(8)

Notice that the last term on the left-hand side of (8) is zero by the
definition of left eigenvector. Using this fact, (8) can be rewritten
as

(9)

or

(10)

Next, the derivative of with respect to can be obtained
using (4) as

(11)

Substituting (11) into (10), we get

(12)

Using (12), we can determine the slope of eigenvalues of
at its singular frequencies. The regions and bandwidth of local
passivity violation are then determined using the following
steps.

1) Collect the pure imaginary eigenvalues (consider only
those with positive imaginary parts) of the Hamiltonian
matrix of (5) in a vector such
that , where “ ” is the total
number of such entries. Let .
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Fig. 2. Illustration of identification of regions of passivity violation.

It should be noted that finding the imaginary eigen-
value may not be a trivial task, since the real part of
the eigenvalue may not be equal to zero, owing to the
presence of numerical noise. In our implementation,
this difficulty is overcome by using the property of the
Hamiltonian matrix, that is, its eigenvalue spectrum is
symmetric with reference to both the real as well as
the imaginary axis. This implies that if is a complex
eigenvalue of a given Hamiltonian matrix, then , ,
and are also its eigenvalues. On the other hand,
the imaginary eigenvalues are symmetric only with re-
spect to the real axis (i.e., if is an imaginary eigen-
value of a given Hamiltonian matrix, then is also its
eigenvalue). As a consequence of this property, while
determining if an eigenvalue is imaginary or not, we
check for the eigenvalues, which are symmetric only
about the real axis. As a result, the effect of numerical
noise is taken care of while identifying the imaginary
eigenvalues of the Hamiltonian matrix.

2) Next, at the frequency corresponding to each of the
above entries, evaluate the slope of the eigenvalue of

using (12). Note that the slope at is always
positive since .

3) Count the number of positive and negative slopes
starting from . When the count of positive and
negative slopes become equal, say at , then the first
region of local passivity violation is established (i.e.,
the region between to ).

4) Reset the count of slope to zero and designate
and repeat Steps 3 and 4 until all entries in the

vector are exhausted.
These steps are illustrated in Fig. 2(a), for the case of Hamil-

tonian matrix having six pairs of imaginary eigenvalues.
The situation when the passivity violation starts at zero fre-

quency is illustrated with an example in Fig. 2(b). As seen in
this example, when the counting of slopes is restarted after de-
termining the second region of violation, the number of positive
slopes becomes one and the number of negative slopes is equal
to zero, at the end of counting the slopes. In such cases, a re-
gion of violation exists between the first frequency point from

where the counting of slope is restarted (in this case, ) and
zero Hertz (origin).

The proposed passivity enforcement algorithm assumes that
the imaginary eigenvalues of the Hamiltonian matrix are simple.
However, it can be easily extended to the case of Hamiltonian
matrices with repeated imaginary eigenvalues using the well-
established approach outlined in [20].

B. Determination of Magnitude of the Maximum Violation in a
Nonpassive Region

In this step, the exact location of maximum passivity viola-
tion (i.e., the maximum negative eigenvalue of ) is deter-
mined in each region of passivity violation (these locations are
corrected first during the compensation process). These loca-
tions are found by solving the following problem in each region
of passivity violation:

Real (13)

where and are the boundaries of a passivity violating re-
gion. For instance, in the first region of violation in Fig. 2(a),

and . The problem in (13) converges very fast
as it is associated with only one variable and has a good ini-
tial guess (midpoint of and ).

C. Passivity Compensation

With the regions of passivity violation as well as location and
magnitude of maximum violations in each such region known,
the passivity correction (compensation) is performed as follows.
Consider the real part of the admittance matrix, given by (4). If
the macromodel is nonpassive (i.e., is negative definite),
we perturb the residue matrix by (keeping matrices ,

, and unchanged) so that

(14)
at the frequency point of maximum violation in a non-
passive region under consideration. For example, let
represent the eigenvalue of at a frequency point of
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maximum passivity violation. To compensate this, we add
to by slightly

perturbing the matrix such that [34]

(15)

where and are the left and right eigenvectors of . After
some algebraic manipulations, (15) can be converted into a set
of linear equations in the form

(16)

where the unknown perturbed values of selected residues are
contained in the vector . Next, details on the selection of ap-
propriate residues for perturbation to achieve the desired correc-
tion is given.

1) Selection of Appropriate Residues for Perturbation: In
the proposed algorithm, the perturbation is effected on real part
of residues of driving point admittances corresponding to the
poles in the vicinity of passivity violation. Identification of such
poles is done by determining the contribution of each pole to the
real part of diagonal elements of the admittance matrix in the
frequency region of violation. This is done by integrating the
square of the real part of the response (represented by ) of
every pole for a passivity violating region under consideration
(with boundaries and ), as follows:

(17)

The poles with the significant contribution are selected, and
their residues corresponding to the driving point admittances
are perturbed during passivity compensation process. Next, an
appropriate mapping of such residues to the residue matrix
(for formulating and of (14) and (16), respectively) is
illustrated using the following example.

Consider a two-port network with two poles and
. Let the corresponding residues at different ports

be ; . The state–space realization
[26]–[28] for the network can be expressed as

(18)

Assuming that the above poles are identified by (17), the
residues shown in the following equation are perturbed in the
proposed algorithm:

(19)

Consequently, for this example can be represented as

(20)

and the corresponding unknown vector in (16) is
. For the general case of the -port network

with pair of complex poles, if the pole pair is selected
by (17), then the corresponding has the form shown in
(21) at bottom of page, and the corresponding unknown vector

in (16) is . In case more poles
are involved, then will have block diagonal entries for the
corresponding poles similar to the one described by (21), and
vector is formulated accordingly.

With the residues for perturbation selected as per above
guidelines, (16) is solved to offset (obtained as per the
guidelines in Section IV-B), the eigenvalue of at the fre-
quency point of maximum violation. This process is continued
at the point of maximum passivity violation in each passivity
violation regions.

The advantage of the proposed perturbation (of the diagonal
elements of ) is that it always adds positively to the eigen-
values of and, hence, does not lead to a new passivity
violation at any other frequency point. This can be proved using
the following two lemmas.

Lemma 1: The real part of the frequency response of a pole
is linearly proportional to the real part of its residue.

Proof of Lemma 1: For the purpose of illustration, con-
sider the response of a complex pole pair with
the corresponding residue , as follows:

(22)

Separating (22) into real and imaginary parts,
we get

Real Part

Imaginary Part

(23)

column

...
...

...
...

...
...

. . .
...

...
...

(21)
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From (23), it is evident that the real part of the response of
a complex pole is linearly proportional to the real part of its
residue. Similarly, it can be easily shown that the above is true
for the case of real poles as well.

Lemma 2: If the real part of an -port symmetric admittance
matrix (represented by ) is perturbed by a diagonal matrix

, where

. . .

(24)

then the contribution of this perturbation to the eigenvalues of
the is nonnegative throughout the frequency spectrum.

Proof of Lemma 2: Let and be the left and right eigen-
vectors of . Using the eigenvalue perturbation formulas
[34], we can write the contribution of (24) to an eigenvalue of

as

(25)

Noting that is a real symmetric matrix and the fact that
the left eigenvector is equal to the right eigenvector for a real
symmetric matrix, we can write (25) as

(26)
It is evident from (26) that the contribution of the proposed

perturbation (of the diagonal elements of ) always adds
positively to the eigenvalues of and, hence, does not lead
to the passivity violation at any other frequency point.

2) Error Estimation: As a result of perturbation of the
residue matrix for compensation, there will be some error
introduced in the time- and frequency-domain responses. An
estimation of this error can be obtained as follows.

Expressing the norm [35] of , we have

trace (27)

where is the Frobenius norm of , is the
number of ports, and is the controllability Grammian obtained
by solving the following Lyapunov equation:

(28)

By leaving the matrices and unchanged and with matrix
being constant, it is evident from (27) that keeping

will keep the error in the time and frequency domain to the
minimum.

One of the major advantages of the proposed algorithm
compared with the recent technique in [20] is that it provides a

guaranteed search direction during passivity enforcement (i.e.,
passivity enforcement at one region does not lead to passivity
violation at other region), thereby enabling faster convergence.
Also the proposed algorithm provides additional computa-
tional advantages compared with [20], where to determine the
passivity violation region as well as to enforce the passivity
via perturbation of eigenvalues of the Hamiltonian matrix,
the eigenvectors of the Hamiltonian matrix, which is of size

Num of Ports Num of Poles , were used. On the other
hand, the proposed algorithm accomplishes the above using
the eigenvectors of the transfer-function matrix, which is of
size Num of Ports Num of Ports , much smaller than that
of the Hamiltonian matrix and, hence, leads to additional CPU
savings in each iteration.

A summary of the steps involved in the proposed passivity
enforcement algorithm is given hereafter in the form of pseu-
docode.

3) Pseudocode for the Proposed Passivity Compensation Al-
gorithm:

Step 1: Obtain multiport tabulated
data up to (maximum frequency
of interest).

Step 2: Compute the multiport
pole-residue model (1). Obtain
the state–space system
( , , , ) (2).

Step 3: Construct the Hamiltonian
matrix and check its eigenvalue (5).
if no imaginary eigenvalues are
found, macromodel is passive.
Go to End

else a) Determine the singular
locations of using Theorem
2 and collect them in a vector

such that
, where “T” is the

total number of such entries. Let
.

b) Determine the regions of
violation using the following
steps as outlined
in Section IV-A:

(i) At the frequency
corresponding to each of the
entries in the vector ,
evaluate the slope of the
eigenvalue of using (12).

(ii) Count the number of
positive and negative slopes
starting from . When the count
of positive and negative slopes
become equal, say at , then the
first region of local passivity
violation is established (i.e.,
the region between to ).
(iii) Reset the count of slope

to zero and designate
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Fig. 3. Three-port interconnect network.

and repeat steps (ii) and (iii)
until all entries in the set
are exhausted.

c) Determine the exact
location of maximum passivity
violation in every region of
violation using (13).

d) Identify the poles used
for compensation using (17)
and then select the
corresponding residues of driving
point admittances (as per the
guidelines in Section IV-C) and
formulate .

e) Perform the passivity
compensation by computing at
each point of maximum violation
determined in c) using (16). Go
to End

End

V. COMPUTATIONAL RESULTS

In this section, two examples are presented to demonstrate
the efficiency and accuracy of the proposed compensation
algorithm.

Example 1: Three-Port Tabulated Data: In this example, the
proposed compensation algorithm was performed on the tabu-
lated data obtained from a three-port interconnect subnetwork
[3] (Fig. 3). The subnetwork was characterized by a set of tabu-
lated data ( -parameters) up to 6 GHz (henceforth referred to
as the original data). The data was fitted using the algorithm
described in [5] (40 complex poles and four real poles were
required; all were stable poles and are listed in Table I) and
the state–space macromodel was obtained. The macromodel is
tested for passivity using Theorem 1 of Section III by solving the
Hamiltonian matrix (5). In this case, six imaginary eigenvalues
were found, indicating that the macromodel is nonpassive. The
details of the eigenvalue spectrum of the Hamiltonian matrix
are given in Fig. 4(a). For the purpose of clarity, Fig. 4(b) shows
an enlarged view of the eigenvalue spread near the imaginary
axis and also shows the exact numerical values of the imaginary
eigenvalues. According to Theorem 2 of Section III, these imag-
inary eigenvalues correspond to the exact locations at which
eigenvalues of Real become zero. Fig. 5 confirms this
result, which shows the eigenvalue spectrum of Real .

TABLE I
LIST OF POLES FOR EXAMPLE 1

As seen in this figure, Real becomes singular at six fre-
quency points, exactly corresponding to the imaginary eigen-
values of the Hamiltonian matrix.

The regions of passivity violation were then determined using
the method in Section IV-A. In this example, three regions of
passivity violation were found, and they are indicated in both
Figs. 5 and 6. In each region, the location of maximum passivity
violation was determined using (13) of Section IV-B, and the
corresponding details are given in Table II.

With the above information of exact locations of passivity
violation, passivity correction was performed using the steps
proposed in Section IV-C by perturbing the selected residues
of diagonal elements of the admittance matrix. The details of
poles and selected residues (before and after perturbation) and
the relative norm of the perturbed residue matrix are
summarized in Table II.

Fig. 6 shows the eigenvalue spectrum of Real before
and after the compensation. As indicated by the dotted line, all
violations were corrected by the proposed algorithm. This is also
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Fig. 4. (a) Eigenvalue spectrum of Hamiltonian matrix (example 1). (b)
Enlarged view of eigenvalue spectrum.

verified by formulating the Hamiltonian matrix (5) of the com-
pensated macromodel. Figs. 7 and 8 show the comparison be-
tween the original data and the response of the proposed passive
macromodel, and they match accurately. The MATLAB imple-
mentation of the proposed algorithm on a Sun-Blade-100 ma-
chine required 6.49 s.

Next, the passive macromodel is linked to HSPICE and a non-
linear transient analysis is performed for an input pulse having
a rise and fall time of 0.1 ns and pulsewidth of 5 ns. The result at
node is shown in Fig. 9. For validation purposes, the original
network (from which the tabulated data was obtained) was also
subjected to the transient analysis (using HSPICE) with similar
input and terminations, and the results are compared in Fig. 9.
As seen, both match accurately.

It is to be noted that, while using the proposed global passivity
enforcement algorithm, no additional regions of passivity viola-
tion were introduced during the compensation process (since it
employs a guaranteed search direction for enforcing passivity).
On the other hand, for comparison purposes, when the passivity
compensation algorithms of [17] and [21] are used, two new
passivity violation regions were introduced while performing

Fig. 5. Eigenvalue versus frequency of Real(YYY (j!))—(example 1).

Fig. 6. Eigenvalue versus frequency of Real(YYY (j!))—with proposed
passivity compensation.

the compensation at the above three regions. It is to be noted
that this problem could be aggravated in the presence of many
regions of passivity violations in the original macromodel and
also for macromodels with a large number of ports.

Example 2: Four-Port Tabulated Data: In this example, the
proposed algorithm was performed on the tabulated parame-
ters of a four-port interconnect subnetwork (Fig. 10). The data
was fitted using the algorithm described in [5] (20 complex poles
and four real poles were required; all were stable poles), and
the state–space macromodel was obtained. The macromodel is
tested for passivity using Theorem 1 of Section III by solving
the Hamiltonian matrix (5). In this case, two imaginary eigen-
values were found, indicating that the macromodel is nonpas-
sive. This is confirmed by the corresponding eigenvalue spec-
trum of Real , which is given in Fig. 11(a).

The regions of passivity violation were then determined using
the method in Section IV-A. In this example, one region of pas-
sivity violation was found and is indicated in Fig. 11(a). In this
region of violation, the location of maximum passivity viola-
tion was determined using (13) of Section IV-B, and the corre-
sponding details are given in Table III.

With this information of exact location of passivity violation,
passivity correction was performed using the algorithm proposed
in Section IV-C by perturbing the selected residues of diagonal
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TABLE II
DETAILS OF PROPOSED PASSIVITY CORRECTION ALGORITHM FOR EXAMPLE 1

elements of the admittance matrix. Due to the guaranteed
search direction for enforcing passivity used in the algorithm,
no additional regions of passivity violation were introduced
during compensation. The details of the poles whose residues
are perturbed and the relative norm of the perturbed residue
matrix are summarized in the Table III.

Fig. 11(b) shows the eigenvalue spectrum of Real
before and after the compensation. Figs. 12 and 13 show
a sample of comparisons between the original data and the
response of the proposed passive macromodel, and they match
accurately. Next, a nonlinear transient analysis is performed
by replacing the four-port linear network in Fig. 10 with the

proposed macromodel for an input pulse having a rise and
fall time of 0.1 ns and pulsewidth of 5 ns (using HSPICE).
For validation purposes, the original network from which the
data was obtained was also subjected to the transient analysis
(using HSPICE) with the similar input and terminations, and
the corresponding transient results are compared in Fig. 14.
As seen, both match accurately.

VI. CONCLUSION

In this paper, an algorithm has been presented for passivity
compensation of nonpassive macromodels obtained from
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Fig. 7. Frequency responses (magnitude) for example 1.

tabulated data. The algorithm presented here is based on a guar-
anteed search direction for passivity correction and performs
compensation without introducing any new regions of passivity
violation. This overcomes the major limitation of local passivity
enforcing algorithms in literature, which are prone to introduce
new regions of passivity violation during the passivity compen-
sation process. The paper also provides an error estimate for the
response of the passivity-compensated macromodel. Numerical
examples are presented to validate the validity and accuracy of
the proposed algorithm.

APPENDIX A

In this appendix, we show the proof of the corollary of The-
orem 2: “the Hamiltonian matrix has an eigenvalue , if
the real part of the corresponding symmetric admittance ma-
trix, is singular, provided is a positive definite
matrix.”

Fig. 8. Frequency responses (real part) for example 1.

Fig. 9. Transient result of example 1.

Let us start by assuming that is singular at frequency
. This means that has an eigenvalue that is zero, i.e.,

(29)

or

(30)
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Fig. 10. Four-port interconnect subnetwork (example 2).

Fig. 11. Eigenvalues of Real(YYY (j!)) for example 2. (a) Nonpassive macromodel. (b) Enlarged view: Comparison of eigenvalues of nonpassive and compensated
macromodels.

where is the eigenvector in the null space of . Noting
that and using (3), (30) can
be rewritten as

(31)
or

(32)
Substituting

(33)

and

(34)

we can write (32) as

(35)

or

(36)
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TABLE III
DETAILS OF PROPOSED PASSIVITY CORRECTION ALGORITHM FOR EXAMPLE 2

or

(37)

Next, using (33) and (34), we get

(38)

and

(39)

respectively. Combining (38) and (39), we get

(40)

Fig. 12. Sample admittance parameter for example 2—real part.

Fig. 13. Sample admittance parameter for example 2—imaginary part.

Fig. 14. Transient response (example 2).

Now, substituting from (37) in (40), we get

(41)
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or

(42)

or

(43)

Noting that the Hamiltonian matrix is defined as in (5), we
can write (43) as

(44)

It is evident from (44) that is the eigenvalue of Hamiltonian
matrix as defined in (5). Next, correlating this information
with the initial assumption we started with, i.e., is sin-
gular at frequency , we can infer that the frequency point at
which is singular corresponds to the imaginary eigen-
value of the Hamiltonian matrix .
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