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Abstract—We propose a fast algorithm for the electromagnetic
analysis of complex and multiscale interconnect networks in
layered media. With a multigrid approach, we address the
fundamental reason why the adaptive integral method (AIM)
and pre-corrected FFT are inefficient for multiscale problems.
Numerical tests with a preliminary implementation show that
the proposed method is as accurate as AIM, but up to 16.8×
faster in the electromagnetic analysis of a complex interconnect
network from a commercial integrated circuit, demonstrating the
high potential of the proposed ideas.

Index Terms—electromagnetic analysis, interconnect networks,
multiscale, adaptive integral method, multigrid.

I. INTRODUCTION

Full-wave electromagnetic (EM) analysis of electrical in-
terconnects and electronic packages is direly needed to de-
sign, optimize, and validate next-generation electronic devices.
However, the EM analysis of modern interconnects and pack-
ages is extremely time consuming, and often infeasible, due
to their complexity. Furthermore, these structures are typically
embedded in layered media and strongly multiscale, due to the
simultaneous presence of large objects (e.g. ground planes)
and tiny features (e.g. vias). Numerical methods that can ac-
curately and efficiently simulate large, complex, and multiscale
structures embedded in layered media are desperately needed.

A popular technique to solve Maxwell’s equations for
interconnect problems is the boundary element method (BEM).
The BEM utilizes a surface mesh of conductive objects that
can reduce the total number of unknowns considerably when
compared to the finite element method or volumetric integral
equation methods like PEEC. However, the BEM results
in a dense system of equations. For large problems, this
system must be solved iteratively with a fast algorithm to
compute matrix-vector products. With layered media, the most
popular acceleration method is the adaptive integral method
(AIM) [1]–[3], or the closely-related pre-corrected Fast Fourier
Transform (FFT) [2], [4]. Unfortunately, the AIM and pre-
corrected FFT methods become very inefficient for multiscale
structures, as they rely on a grid of uniform resolution to
enable field propagation by FFT. Such a grid is intrinsically
inefficient for such problems, since the mesh will unavoidably
contain a mix of large and small triangles. For accuracy
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reasons, the largest mesh triangle will impose a relatively
coarse resolution of the FFT grid. In turn, this will mean that
many tiny triangles will fall in the near-region of each triangle,
resulting in enormous integration costs to fill the near-region
part of the BEM matrix [5].

Recently, we demonstrated that the efficiency of the AIM
can be massively increased by: i) adapting the size of pro-
jection stencils to each triangle, ii) introducing a hierarchy
of grids of different resolution as in multigrid methods [6],
[7], iii) using the quasi-static Green’s function in the near-
region, and iv) exploiting voids and sparsity. The resulting
technique, called MultiAIM [5], was previously developed for
free space problems. In this paper, we generalize this approach
to layered media and show preliminary results that confirm its
high potential for accelerating the EM analysis of multiscale
interconnects.

II. FORMULATION

We consider a set of conductive objects immersed in a
layered medium and excited through lumped ports. We use
the augmented electric field integral equation (AEFIE) to
avoid low frequency breakdown [8] and the surface impedance
boundary condition (SIBC) to model the skin effect [9].

In the AEFIE, the surface current density JS and surface
charge density ρS are both taken as unknowns. They are
related by the electric field integral equation and by the
continuity equation which, after discretization with the method
of moments (MoM), read[
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where k0 is the wavenumber, η0 is the wave impedance
and c0 is the phase velocity in free space. Dense matrices
L(A) and L(ϕ) are the vector and scalar parts of the electric
field integral equation operator, which involve the multilayer
Green’s function (MGF). The SIBC is enforced by Zs. Vector
Is contains the excitation current injected at each port and
matrix C provides coupling to the external circuit. Matrices
D, F and B are defined in [8].

In order to quickly solve (1) using an iterative method,
matrix-vector products involving L(A) and L(ϕ) must be
computed rapidly. In the AIM, matrices L(A) and L(ϕ) are split
into near-region and far-region components as L = LN +LF ,
where the near-region component must be computed using
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Fig. 1. The conventional stencils used in the AIM and the adaptive stencils
used by the proposed method.

expensive numerical integrations involving the MGF. The far-
region component is computed by introducing a regular grid
and executing a series of steps that can be expressed using
matrices as

LF = W(0,1)H(1)P(1,0) − Lc. (2)

In (2), P(1,0) projects current and charge densities from the
mesh triangles onto a set of nearby point sources, called a
stencil. The point sources are chosen to produce the same
fields (at sufficient distance). Then, H(1), taking advantage of
the 2D translational invariance of the MGF, quickly computes
the fields produced by these sources on the same grid using
2D FFTs. Next, the fields are interpolated back from grid
points to mesh triangles by W(0,1). Since this process is
inaccurate in the near region, a correction matrix Lc replaces
the fields computed by FFT with the accurate ones obtained
by integration. When a large frequency sweep is needed, these
steps can be performed more efficiently using the extended
AIM (AIMx) [10].

III. PROPOSED METHOD

For multiscale problems, the single uniform grid used by
the AIM undermines its efficiency. The largest mesh triangle
will impose a relatively large grid spacing, since each triangle
must be contained in the projection stencil related to P(1,0).
Consequently, the near-region associated with each triangle
will be large, and contain a high number of small triangles,
leading to dense blocks in LN . Each entry in this block
and in the related LN must be computed by integrating
the Green’s function, which is very expensive, especially for
layered substrates. If grid resolution is increased, accuracy will
be compromised and FFTs will become very costly.

We can overcome these challenges in the following way.
First, we adapt the size of projection stencils to the size of
each triangle, as shown in Fig. 1. We devised an efficient
procedure to scale the stencil of each triangle independently
in each dimension, with minimal overhead for the necessary
bookkeeping [5]. Adaptive stencils enable the use of an FFT
grid of arbitrary resolution, no longer constrained by the
largest triangle. Second, we introduce a hierarchy of L grids,
as in multigrid algorithms [6], [7], with the goal of being
able to control the resolution of the coarsest grid where FFTs
are performed. The spacing of the grid at level l + 1 is
twice the spacing at level l, so we have ∆(l+1) = 2∆(l)

for l = 1, . . . , L − 1. In our implementation, the number of
grids L can be chosen independently along each direction,
since interconnect layouts are usually very thin in the vertical
dimension. With multiple grids, the far-region matrix LF can
be approximated as

LF
∼= W(0,1)

(
H̃(1) +H(1)

c

)
P(1,0) − Lc , (3)

where the new propagation matrix is defined recursively as
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and l = 0 denotes the triangular mesh. Matrix P(l+1,l) projects
sources from level l to level l + 1. When level L is reached,
matrix H(L) propagates fields. For layered substrates, this
matrix originates from the dyadic MGF, and comprises a
vector and a scalar potential part
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The matrix-vector product of this propagator can be computed
rapidly with 2D FFT in each xy plane. Finally, fields are
interpolated back to lower level grids by W(l,l+1), until the
triangular mesh is reached. H(l)

c is a correction matrix related
to the singularity of the Green’s function [5]. The use of
multiple grids leads to an extremely efficient algorithm even
for strongly multiscale layouts, capable of simultaneously
resolving tiny details (with the finest grid) and propagating
fields efficiently (with the coarsest grid). The required near
region is so small that the quasi-static Green’s function can
be used to compute LN , for further gains [5]. Furthermore,
we found that most grid points are not utilized, especially
around voids in the layout. Such points can be detected with
sparse matrix techniques and removed to compress all vectors
and matrices [5]. The choice of grid resolution and number
of levels L is fully automated for free space [5], and can be
extended for layered medium.

IV. NUMERICAL RESULTS

A. Package microstrip benchmark

First, we tested the proposed method on a package mi-
crostrip benchmark [11], which features a single-ended mi-
crostrip with probe landing pads on both ends. We used a
simplified substrate with the microstrip embedded in a dielec-
tric layer with thickness 55.85 µm, and a layer of solder resist
on top of thickness 33.55 µm. Conductors have conductivity
σ = 4.5 × 107S/m. The structure was meshed with 82,566
triangles and 123,849 edges. The S-parameters were extracted
from 100 MHz to 40 GHz and are shown in Fig. 2. The results
from the proposed method are in excellent agreement with
those from AIM and AIMx. From Table I, we see that the
proposed method is 12.0× faster than AIM, reducing analysis
time from 44.3 to 3.7 hours. The higher memory consumption
is partly due to the preliminary implementation that is not yet
optimized.



TABLE I
SIMULATION PARAMETERS, CPU TIME, AND MEMORY USAGE FOR THE TWO EXAMPLES IN SEC. IV-A AND IV-B

Testcase Method Levels ∆
(1)
x ,∆

(1)
y ,∆

(1)
z

CPU Time (h) Memory
(GB)

Integration Precorrection Iterative Solution Total

AIM 1 λ/81, λ/84, λ/151 35.8 3.6 4.3 44.3 13
AIMx 1 λ/81, λ/84, λ/151 0.7 0.1 6.5 7.4 13Microstrip

Proposed 3 λ/349, λ/365, λ/226 0.3 0.1 2.9 3.7 27

AIM 1 λ/1053, λ/1063, λ/1304 131.9 8.8 12.4 168.5 106
AIMx 1 λ/1053, λ/1063, λ/1304 6.6 0.9 12.5 20.7 106Network from real IC

Proposed 3 λ/4215, λ/4272, λ/1630 3.1 1.0 4.6 10.0 157

Fig. 2. Scattering parameters from 100 MHz to 40 GHz for the microstrip in Sec. IV-A.

B. High-speed interconnect from a real integrated circuit

The next example involves a portion of a high-speed com-
munication bus from a commercial integrated circuit (courtesy
of Advanced Micro Devices). The structure consists of an
intricate network of wires and planes, with 65 distinct con-
ductors of different size and shape. The mesh has 572,204
triangles and is strongly multiscale, with some triangles being
19 times smaller than others. Conductors are made of copper
and placed in a 54.5 µm-thick dielectric layer with permittivity
of 3.1. Excitation is applied through two lumped ports from
10 MHz to 50 GHz. In Fig. 3, the scattering parameters
obtained from the three methods are reported, and are in very
good agreement. Table I shows that the proposed approach
significantly reduces integration, pre-correction and interative
solution times compared to both the AIM and AIMx. Over-
all, the proposed method is 16.8× faster, reducing analysis
time from 169 to 10 hours. Although from a preliminary
implementation, these results demonstrate the high potential
of the proposed approach for accelerating the analysis of real,
complex and multiscale interconnect layouts from emerging
2.5D and 3D architectures.
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