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Abstract—This paper proposes a versatile genetic algorithm-
Bayesian optimization(GA-BO) bi-level optimization method, in
which BO determines the optimal hyperparameters for GA that
optimizes the decoupling capacitor (decap) placement. Through
optimizing the GA hyperparameters, the proposed method en-
sures effective optimization that leads to an optimal PDN design
that meets the target impedance with the minimum number of
decaps. The proposed method was applied to the hierarchical
power distribution network (PDN) of high bandwidth memory
(HBM) and verified the performance of two objective functions
for GA and BO, respectively, and its stability. Furthermore, to
verify its versatility, the proposed method was also applied to
a different type of PDN and outperformed the random search
method by successfully placing 18 decaps that satisfy the target
impedance.

Index Terms—Power distribution network, decoupling capac-
itor, genetic algorithm, Bayesian optimization, hyperparameter
optimization, optimal PDN.

I. INTRODUCTION

As the demand for high-bandwidth computing systems has

grown with the rise of large artificial intelligence (AI) models,

high bandwidth memory (HBM) modules have emerged as

a solution, offering up to 1 TB/s data bandwidth between

memory and processors. However, the simultaneous switch-

ing of HBM’s 1024 I/O drivers generates high simultaneous

switching current (SSC). This SSC flows through the power

distribution network (PDN), resulting in simultaneous switch-

ing noise (SSN) that causes significant voltage fluctuations and

unreliable power supply. To reduce the amount of SSN, the

impedance curve of the PDN should be optimized.

Placing decoupling capacitors (decaps) on the PDN miti-

gates impedance, leading to maintain SSN within the accept-

able noise margin. While increasing the number of decaps

improves performance of power integrity (PI), it also raises

fabrication costs. Therefore, finding the optimal decap place-

ment that minimizes number of decaps is crucial. However,

optimizing the decap placement is challenging due to the

complex solution space and involving extensive simulation

times that is related to computation budget.

Recently, there have been several AI based methods pro-

posed to address the challenge of optimizing decap placement.

The existing reinforcement learning methods [1], [2] are only

Fig. 1: Overview of the proposed GA-BO bi-level optimization

method for optimizing GA hyperparameters and PDN design.

reusable in terms of probing port. Hence, if the target PDN

changes, they cannot be instantly employed and they have to be

re-trained, involving huge iterations. Genetic algorithm (GA)

is a widely used optimization method known for its speed,

reusability, and flexibility [3], [4]. However, the performance

of GA relies heavily on hyperparameters such as population

size (P ), number of generations (G), and the utilization of spe-

cific operators like the percentage of elite population (Pelite).

Finding optimal hyperparameter values requires extensive it-

erations as different combinations of P and G with the same

number of samples yield varying performance. However, none

of the previous GA-based decap placement works include a

discussion of the specific hyperparameter values used, despite

their significance.

In this paper, we proposed a bi-level optimization method,

denoted as GA-BO, which integrates the GA and Bayesian

optimization (BO). The GA-BO bi-level optimization method

offers optimal values of GA hyperparameters with the mini-

mum number of decaps that satisfies the target impedance and

an optimal decap placement solution, while eliminating the

need for manual hyperparameter tuning when the target PDN

changes.

II. PROPOSAL OF GA-BO BI-LEVEL OPTIMIZATION

Fig. 1 demonstrates the overview of the proposed GA-BO

bi-level optimization method that has a BO encapsulated GA

structure. The purpose of the BO phase is to optimize the

GA hyperparameters within the specified range, while the GA
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phase aims to find the optimal decap placement that effectively

suppresses impedance below the target impedance with the

BO-determined number of decaps and its hyperparameters.

The inputs for this method include the range of GA hyper-

parameters (P , G, Pelite), the range of the number of decaps

(Ndecap), and the initial impedance parameters of the target

PDN with its target impedance.

The BO provides specific values of P , G, Pelite and Ndecap

to the GA. Then, the GA outputs the decap placement solution

that maximizes the value of RGA, indicating the most effective

impedance suppression out of the generated decap placements.

This maximum value of RGA is inputted into the BO objective

function, which results in RBO as the output of the black-

box function. Influenced by the provided RBO, the acquisition

function is updated to generate optimal input values to the GA

that overall maximizes RBO as well as RGA.

Through N iterations of the process described above, the

decap placement solution and GA hyperparameters with the

maximum value of RBO is derived as the final output of the

GA-BO bi-level optimization method. Ultimately, this method

enables the simultaneous optimization of decap placement and

GA hyperparameters with the minimum number of decaps that

satisfies the target impedance.

A. Objective function of Genetic Algorithm

The GA computes the objective score for choosing optimal

decap placement among total generated decap placements.

Subsequently, the maximum objective score of GA is conveyed

to the BO, enabling the overall optimization process. The

formulation of the GA’s objective function is as follows:

R(f) = (Ztarget(f)− Zfinal(f)) · 1GHz

f
· w (1)

w =

{
α, if Zfinal(f) < Ztarget(f).

β, otherwise.
(2)

To evaluate the PI performance of decap placement, the

frequency-dependent impedances at the probing port after

decap placement, Zfinal, are simulated. Then, the frequency-

dependent objective scores, R(f), are calculated at each fre-

quency, f , in the set F through Eq. (1) to ensure the impedance

suppression below the target impedance, Ztarget. The weight

w is determined by Eq. (2) and α is always greater than β to

impose a higher penalty when the impedance fails to meet the

target.

RGA =
∑
f∈F

R(f) (3)

RGA = −100 ·RGA, if ∃Zfinal(f) > Ztarget(f). (4)

To obtain the final objective score of GA, the objective

scores computed for each frequency are aggregated as Eq. (3)

and penalty is assigned once again if the impedance at any

frequency fails to meet the target as Eq. (4).

Fig. 2: The target on-interposer PDN of HBM for verification.

B. Objective function of Bayesian Optimization

The BO receives the maximum objective score of GA and

computes its own objective score, RBO. The formulation of

the BO’s objective function is as follows:

RBO′ =

{
100 · max(RGA), if max(RGA) < 0.
max(RGA), otherwise.

(5)

RBO = RBO′ + (
γ

Ndecap
) (6)

where γ refers to the problem-specific weight term. The

objective function of BO initially penalizes solutions that do

not meet the target impedance by Eq. (5). Then, it assigns a

higher score to solutions with the smaller number of decaps

through Eq. (6). This approach ensures that the resulting ob-

jective score of BO encompasses both impedance suppression

below the target and the minimization of the number of decaps.

III. VERIFICATION OF THE PROPOSED METHOD

A. Experimental Setup for Verification

The proposed method was verified on the hierarchical PDN

of HBM, consisting of package PDN, on-interposer PDN and

on-chip PDN. On-interposer PDN and on-chip PDN were

modeled through unit-cell segmentation method, and package,

which demension is 30mm× 30mm, was modeled by 3D

simulation tool. Fig. 2 illustrates target on-interposer PDN

where decap placement was implemented. This target PDN

is composed of Nrow ×Mcol (= 17× 8) unit cells. High-

k metal-insulator-metal (MIM) capacitors were employed as

decaps for the target PDN, and their electrical parameters are

based on [5]. The frequency range is set from 100 MHz to

20 GHz, and a total of 231 frequency points, denoted as F in

Eq. (1), were selected for evaluation.

B. Performance Verification of GA-BO Bi-Level Optimization

Genetic Algorithm. Fig. 3(a) demonstrates the clear ob-

jective function behavior of the GA. For this particular case,

the GA hyperparameters were configured with P of 30, G
of 10, Pelite of 20, and Ndecap set to 20. Throughout the

GA iterations, the decap placement exhibiting the highest

impedance suppression with the GA objective score (RGA)

of 70.7, was identified as the optimal solution, the impedance

of which is depicted by the blue plot in Fig. 3(a).

Bayesian Optimization. Fig. 3(b) illustrates the effective

construction of the BO objective function. The P was gen-

erated within the range of 8 to 30, while ensuring that the
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Fig. 3: (a) Impedance suppression over the process of the GA according to GA objective function. (b) Impedance suppression

over the process of the BO with 100 iterations for achieving target impedance with minimum number of decaps. (c) Stability

verification of the GA-BO bi-level optimization using three different seeds in terms of impedance suppression.

product of P and G did not exceed 100, and the Pelite was

bounded between 10 and 50. The BO process was carried out

for 100 iterations, resulting in the minimum value of Ndecap

within the range of 14 to 50.

TABLE I: Objective Scores of BO over Iterations

Case Meet GA Hyperparameters RBO

Target P G Pelite Ndecap

1 X 30 3 46 14 -514683

2 O 8 12 10 40 132.1

3 O 25 4 44 18 178.5

Final O 17 5 10 18 181.4

According to the Table I, the proposed GA-BO bi-level

optimization method successfully identifies the optimal decap

placement that meets the target impedance with the minimum

number of decaps by effectively determining the optimal

combinations of GA hyperparameters. Also, we employed

the random search method on the same PDN, but despite

over 50,000 iterations, it could not outperform the proposed

method.

C. Stability Verification of GA-BO Bi-Level Optimization
Furthermore, we carried out the stability analysis of the

proposed method by ablating random seeds. Fig. 3(c) demon-

strates the resulting impedance of optimal solutions derived

from each trial and Table II shows the optimized hyperparam-

eters and their corresponding objective scores.

TABLE II: Stability Verification with Three Different Seeds

Seed GA Hyperparameters RBO

P G Pelite Ndecap

seed 1 10 10 44 18 180

seed 2 8 12 17 18 179.7

seed 3 21 4 48 18 180.1

As shown in Table II, each trial yields the same number of

decaps and similar objective score for the PDN. Notably, BO

consistently identified 18 decaps as the optimal number, thus

confirming the efficacy of the proposed method in achieving

the optimal PDN design with the minimum number of decaps.

D. Versatility Verification of GA-BO Bi-Level Optimization
To verify the versatility, we applied the proposed method

to different PDN [2], which consists of package PDN and

chip PDN. Metal oxide semiconductor (MOS) capacitors were

employed as decaps on the chip PDN, which is composed

of 10× 10 chip unit cells. The proposed method successfully

placed 18 decaps with the objective score of 333.4 that meet

the target impedance within 100 BO iterations while the

random search method achieved 323.7 with 10,000 iterations,

proving that the proposed method is versatile and guarantees

better performance than the random search method.

IV. CONCLUSION

The proposed GA-BO bi-level optimization method tackles

the versatile and cost-effective optimization of decap place-

ment problem. By finding the optimal GA hyperparameter

values using BO, the proposed method achieved optimal decap

placement on the hierarchical PDN of HBM that meets the

target impedance with minimum number of decaps within the

predefined computation budget.
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