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Abstract—The phase estimation amplitude in the quantum ma-
trix equation solver, namely the Harrow/Hassidim/Lloyd (HHL)
algorithm is studied in this work. It is the periodic behavior of
the amplitude with respect to the eigenvalue estimation error
indicates the choice of the simulation time. The impact of
the initial states on the quantum phase estimation (QPE) is
also provided. This work is expected to be instructive for the
formulation of the error analysis in HHL variants.

Index Terms—HHL, QPE, error analysis

I. INTRODUCTION

Electromagnetic simulation tools are vastly used to aid the

design and assess the performance of high-speed intercon-

nects [1]. Due to escalating design complexity, simulations

become increasingly lengthy. An essential determinant of

the simulation time is solving the matrix equation for the

electromagnetic field. To accelerate the matrix equation solver,

a plethora of work on fast algorithms [2] have been proposed

for different formulations. Besides these classical methods,

quantum algorithms have drawn the attention of researchers in

the computational electromagnetic community [3], [4], mainly

because the quantum matrix equation solver [5] can provide

exponential speedup with respect to problem size compared

to their classical counterparts. In the HHL algorithm, QPE is

the crucial component dictating the error of the final state.

In this paper, we study the QPE amplitude behavior, which

yields the optimal choice for the Hamiltonian simulation time

and Clock register size, with respect to the condition number

of the matrix. Understanding this behavior is indispensable to

extend the classical HHL error analysis to HHL variants.

II. ALGORITHM DETAILS

The HHL algorithm [5], solves the matrix equation Ax = b

by preparing a quantum state |x⟩ proportional to the desired

solution vector x. Herein, we make the following assumptions

for the matrix equation for simplicity:

• A ∈ C
N×N is Hermitian with N being a power of 2.

• The condition number κ of A is known or can be

efficiently approximated, and A is scaled so that all of

its eigenvalues belong to the region [1/κ, 1].
• b is a normalized vector.
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Fig. 1. The diagram illustration of the HHL circuit.

The diagram of the HHL circuit is given in Figure 1. Three

registers are the Input/Output register I with n = log2(N)
qubits, the Clock register C with nt qubits, and the Flag

register S that contains a qutrit, whose state is spanned by

basis {|well⟩ , |ill⟩ , |nothing⟩}. We define T := 2nt .

The right-hand-side statevector |b⟩ encoding is assumed to

be carried out efficiently by some procedure, such that the

initial state Uinvert operating on is

|Φ0⟩ = |b⟩I |0⟩C |0⟩S =

N−1
∑

j=0

βj |λj⟩I |0⟩C |nothing⟩S , (1)

where |b⟩ is represented as
∑N−1

j=0 βj |λj⟩ in the eigenbasis of

A: A |λj⟩ = λj |λj⟩. The unitary operation Uinvert represents

the HHL procedure that inverts the matrix A. It contains three

components: QPE, eigenvalue inversion, and QPE inverse,

explained in the next three subsections.

A. QPE

We denote QPE as a unitary operator P , which contains

three steps:979-8-3503-1798-5/23/$31.00 ©2023 IEEE



1) Prepare an initial state on register C. In accordance with

HHL’s formulation, the state after this step is 1

|Φ1⟩ =
N−1
∑

j=0

βj |λj⟩I

√

2

T

T−1
∑

τ=0

sin

[

π

T

(

τ +
1

2

)]

|τ⟩C |nothing⟩S . (2)

2) Apply the Hamiltonian simulation (HS) eiAt0τ/T to

register I conditioned on the state of the clock register

|τ⟩C . The choice of the HS time t0 will be discussed as

the outcome of Section III. The resultant state is

|Φ2⟩ =
N−1
∑

j=0

βj |λj⟩I

√

2

T

T−1
∑

τ=0

sin

[

π

T

(

τ +
1

2

)]

eiλjt0τ/T |τ⟩C |nothing⟩S . (3)

3) Apply the quantum Fourier transform (QFT)

|τ⟩C
QFT−−→ 1√

T

T−1
∑

k=0

e−i(2π/T )kτ |k⟩C (4)

to register C. The resultant state is

|Φ3⟩ =
N−1
∑

j=0

βj |λj⟩I
T−1
∑

k=0

αk|j |k⟩C |nothing⟩S , (5)

where the amplitude is given as

αk|j =

√
2

T

T−1
∑

τ=0

sin

[

π

T

(

τ +
1

2

)]

e
i
(

λj−
2π
t0

k
)

t0
T

τ
.

(6)

The form of the phase term in (6) suggests the definition

of the approximated eigenvalue (associated with the

register C state |k⟩C) as

λ̃k :=
2π

t0
k. (7)

We further define δλ as the error in the eigenvalue

approximation δλ(k|j) := λj − λ̃k.

B. Eigenvalue Inversion

QPE provides the approximated eigenvalues, the next step

is to invert them, achieved by setting the a flag register S as

|h(λ̃k)⟩ := f(λ̃k) |well⟩+ g(λ̃k) |ill⟩

+

√

1− f2(λ̃k)− g2(λ̃k) |nothing⟩ , (8)

where the filter functions f(x) and g(x) are defined as

f(λ) :=











1
2κ̃λ
− cos(πκ̃λ)

2

0

g(λ) :=











0, λ ∈
[

1
κ̃ , 1

]

sin(πκ̃λ)
2 , λ ∈

[

1
2κ̃ ,

1
κ̃

]

1
2 , λ ∈

(

0, 1
2κ̃

]

(9)

1Herein we use the subscript to denote the register for the states and
operators, e.g., UI means a unitary operator U applied to register I , and
|u⟩

I
means that register I is in state |u⟩.

where κ̃ = O(κ) is the approximated condition number.

The state after eigenvalue inversion is

|Φ4⟩ =
N−1
∑

j=0

βj |λj⟩I
∑

k

αk|j |k⟩C |h(λ̃k)⟩S . (10)

C. QPE inverse

Apply inverse QPE P †, resulting in a final state |Φf ⟩

|Φf ⟩ = P †
N−1
∑

j=0

βj |uj⟩I
T−1
∑

k=0

αk|j |k⟩C |h(λ̃k)⟩S . (11)

If the QPE is perfect, the final state will simplify as

|Φf ⟩ =
N−1
∑

j=0

βj |uj⟩I |0⟩C |h(λj)⟩S . (12)

According to (8), if we post-select (12) depending on the state

of the flag register S, we will retrieve a solution state |x⟩ that is

proportional to the solution to the matrix equation x, provided

that all eigenvalues are in the well-conditioned region [ 1κ̃ , 1].

III. PHASE ESTIMATION AMPLITUDE BEHAVIORS

We define δ := t0δλ = λjt0 − 2πk, then the magnitude of

the amplitude can be simplified as

|αk|j | =
√
2

T
sin

( π

2T

)

∣

∣cos ( δ
2T ) cos(

δ
2 )
∣

∣

∣

∣sin
(

δ+π
2T

)

sin
(

δ−π
2T

)
∣

∣

. (13)

QPE makes |αk|j | approach to 1 when |δλ| is close to

0 (corresponding to a good eigenvalue approximation), and

becomes a small number when |δλ| is large (corresponding to

a poor eigenvalue approximation). From (7) and (13), we see

that the choice of t0 is an important factor of the eigenvalue

approximation value and the corresponding approximation

quality. Suppose we use the entire clock register state range,

i.e., k = 0, 1, 2, · · · , T − 1, then the maximum approximated

eigenvalue is maxk λ̃k = 2π(T−1)
t0

.

To be able to approximate the largest eigenvalue T−1
T

2, we

need to require that
2π(T−1)

t0
≥ T−1

T , which indicates that

t0 ≤ 2πT . The choice of t0 = 2πT seems a reasonable one,

as the maximum eigenvalue that can be approximated is T−1
T

in this case. With such choice, the eigenvalue approximation

granularity would be 1/T . In order to ensure enough resolution

of λ̃k point near the minimum eigenvalue T−1
T

1
κ , we need to

choose T ≥ κ + 1. However, note that |α| is a continuous

2πT -periodic function with respect to δ, which indicates that

k = 0 and k = T − 1 gives similar amplitude magnitudes.

Namely, |α(δ(k = 0))| ≈ |α(δ(k = T − 1))|, because the

input difference δ(k = T − 1) − δ(k = 0) = 2π(T − 1) is

close to one period. This behavior is not detrimental when the

target eigenvalue λj is in the middle of the range (around

0.5), but when approximating small and larger eigenvalues

(eigenvalues that are close to T−1
T

1
κ and T−1

T ), the periodicity

of |α| causes unwanted large amplitude at the other end of the

2For mathematical formulation simplify, hereafter we modify the assump-
tion on the eigenvalues’ range slightly: from [1/κ, 1] to T−1

T
[1/κ, 1].



approximated spectrum. Figure 2 illustrates this behavior with

three instances of eigenvalues, exemplifying small, moderate,

and large values.

−2πT − 3

4
2πT − 1

2
2πT − 1

4
2πT 0

δ

10−6

10−3

100

|α
|

a)

|α|

Desired Upper Bound

− 1

2
2πT − 1

4
2πT 0 1

4
2πT 1

2
2πT

δ

10−6

10−3

100

|α
|

b)

|α|

Desired Upper Bound

0 1

4
2πT 1

2
2πT 3

4
2πT 2πT

δ

10−6

10−3

100

|α
|

c)

|α|

Desired Upper Bound

Fig. 2. |α| versus δ for a) small eigenvalue T−1

T

1

κ
, b) moderate eigenvalue

T−1

2T
, and c) large eigenvalue T−1

T
with t0 = 2πT, T = κ+ 1.

In Figure 2, we choose t0 = 2πT, T = κ + 1. The

tested eigenvalues are T−1
T

1
κ ,

T−1
2T , and T−1

T respectively. The

desired upper bound for the amplitude [5] 8π
δ2 is shown in

the figure as well. One can perceive the continuous periodic

pattern of |α| from these figures: the plot manifests at the

opposite extremity. This is because QPE captures the periodic

nature of phase: 0 and 2π are in fact the same point in the polar

plane. When the actual eigenvalue is close to the left boundary
T−1
T

1
κ or the right boundary T−1

T , large amplitudes appear at

the poor eigenvalue approximation range. As a consequence,

the desired upper bound is violated in the unwanted region of

the approximated eigenvalue spectrum.

This issue can be avoided by choosing a smaller t0, a

maneuver with the side effect of wasting some range of the

clock register. To explain, let us consider a choice of t0 = πT ,

in which case, the approximated eigenvalues are

λ̃k = 2
k

T
= 0, 2

1

T
, 2

2

T
, · · · (14)

To approximate the smallest eigenvalue, T should be at least

2κ + 1. If we choose T = 2κ + 1, we only need k up to

⌈(T − 1)/2⌉ to approximate the entire range of the eigenval-

ues, namely the clock register range is not fully used. But

this waste of the clock register is inevitable to truncate half of

the period of |α|, removing the unwanted tail on the opposite

side when the actual eigenvalue is close to either side of the

boundary. The |α| versus k and δ behavior with this choice of

t0 and T is visualized in Figure 3. One can observe that the

desired upper bound is not violated in the entire range of k,

regardless of the actual eigenvalue.
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Fig. 3. Data similarly illustrated as in Figure 2 with t0 = πT, T = 2κ+ 1.

More generally, choosing t0 = c(2πT ) with c < 1
2 will

utilize less spectrum while truncating the |α| more. However,

as t0 = 1
2 (2πT ) is enough to bound |α| in half period,

choosing c < 1
2 does not provide extra benefit. Hence, we

find that c = 1
2 is a optimal choice.

We can conclude on the choice of t0 and T . Thanks to

the analysis on the amplitude behavior, we choose t0 = πT
and T ≥ ⌈2κ+ 1⌉, which dictates the range of required k.

According to the error analysis built on this amplitude analysis,

one can see further that in practice T is chosen as Ω(κ/ϵ),
leading to a choice of t0 = O(κ/ϵ) [5].

IV. CONCLUSION

The amplitude resulting from QPE is continuous with a

2πT -periodicity with respect to δ. Because of this behavior,

the Hamiltonian simulation time and the Clock register size

need to be properly chosen, such that the QPE granularity is

sufficient, simultaneously removing the unwanted tail. Accord-

ingly, the range of k, the Clock register state is determined.

The optimal choice is provided, and the logic of the optimity

of such choice is given. As a future work, this analysis will

be applied to the error analysis of [4].
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