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Abstract—This paper introduces a neural network (NN)-based
practical design tool for quick assessment of package second
level interconnects (SLIs) at the earlier design stages. The study
addresses the well-known computational cost problem of data
generation and training processes of NN implementation by
proposing a flexible model approach, where the SLI geometry
is divided into several building blocks, for which a separate NN
model was trained. The NNs take geometrical parameters as
inputs and return the complex S-parameter matrices as outputs.
The electrical performance of the entire SLI geometry is obtained
by cascading the S-paramaters of the building blocks.

Index Terms—Neural network, high-speed I/O, S-parameters,
packaging, second level interconnect

I. INTRODUCTION

Package second level interconnect (SLI) is a limiting factor
in the electrical performance of microelectronic packages
because of the reflections caused by impedance discontinuities
and crosstalk in the plated through hole (PTH) and ball
grid array (BGA) field. This has become extremely critical
for state-of-the-art package design, particularly for serial in-
put/output (I/O) interfaces where per lane data rates have
started to exceed 100 Gbps per lane [1]. Reflections are
typically minimized by removing the metal layers beneath or
above PTH, BGA and/or microvia pads, which is referred to
as shadow voiding [2]. Although this is an effective way of
improving the electrical performance, the task is extremely
complicated because of the multi-target optimization process
with competing performance goals, such as power rails with
low loop inductances, and manufacturing constraints, such as
maximum void area. Therefore, the optimization of the SLI
electrical performance requires multiple iterations, involving
different aspects of package design, and requiring significant
computational resources because of rigorous full wave anal-
ysis. Hence, a fast and accurate surrogate model (SM) to
predict SLI electrical performance, especially at the earlier
stages of the design cycle, would be extremely useful for rapid
prototyping and short time to market.

Neural network (NN)-based SMs have been extensively
used in the analysis of electrical components for fast and
accurate performance assessment. Several publications in the
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literature reported successful modeling applications of passive
microwave components [3]–[5], high-speed channels [6], lin-
ear and non-linear microwave circuits [7], and causal and pas-
sive S-parameter prediction [8]. Furthermore, NNs have also
been utilized in several package design applications including
voltage regulator optimization and power delivery network
modeling [9]. This paper builds on the theory explained in [8]
to develop a practical tool for fast and accurate S-parameter
prediction of a differential pair on packages with different
stack-ups, using an NN-based SM.

II. MODELING APPROACH

In general, supervised learning-based SMs can provide very
accurate predictions of the system of interest in a very short
amount of time. However, their extrapolation capabilities are
limited. Once the input parameter space is defined and samples
are generated, the prediction capability of the model remains
within that space. A new input parameter space should be
defined and a new data set should be generated even if there
is a small change in the system of interest.

A classical approach for SLI modeling and data set prepa-
ration is to model the entire stack-up in one piece and collect
the data samples via full wave simulations. However, because
of the above discussion, even a small change in the SLI
geometry requires a completely new data set for accurate
predictions. For instance, a new data set and training process
are required for every package with different layer count,
which is computationally extremely expensive. Therefore, in
this study, we adopted a divide and conquer approach, where
the SLI is divided into several building blocks, as shown in Fig.
1, such as the feed, build-up, PTH, and BGA blocks. An NN
model for each block were trained separately and the predicted
S-parameters were cascaded to obtain the S-parameter of the
entire SLI. All SLI models include one feed, one PTH, and
one BGA block, and packages with different number of layers
are obtained by adding build-up blocks as required. This
approach introduces a significant flexibility and generalization
capability, by enabling analysis of packages with different
number of layers using only 4 NN models. Moreover, since the
input parameter count and problem geometries of each block
is much smaller than the entire SLI, the data generation and
training processes are also faster.



Fig. 1. Building blocks of the SLI geometry. (a) The stripline feed. (b) The
stripline feed side view. (c) Build-up layer. (d) PTH. (e) BGA.

Considered interconnect geometry consists of a single dif-
ferential pair and 8 accompanying ground pins on a rectangular
grid. Signal to signal, signal to ground, and ground to ground
pitches are assumed to remain constant through the entire
stack-up. The feed block consists of 3 metal layers with a
stripline feed and microvias whereas, the build-up and BGA
blocks include 2 metal layers. The PTH block, however,
contains 2 core metal layers in addition to 2 build-up metal
layers. Each building block is terminated at the half thickness
of the associated metal layer. For a complete list of the input
parameters and ranges, the reader is referred to [8].

Port parasitics may have a significant impact on the cas-
caded S-parameter data and result in erroneous predictions,
particularly for high number of layers. Therefore, wave ports
were selected for excitation. However, since wave ports sup-
port multi mode propagation, as opposed to lumped ports,
higher order modes may be excited at the pad/via interfaces,
because of the diameter discontinuities. Hence, as illustrated
in Fig. 2, the ports were defined on a coaxial cable-like
input structure, where the inner and outer conductors have
identical diameters to the via pad and antipad. The ports were
also defined at a sufficiently long distance to allow effective
attenuation of the higher order modes, and then deembedded
in accordance with the metal thickness of the model.

III. NEURAL NETWORK ARCHITECTURE

The NN architecture used in this study is identical to the
one proposed in [8] and is summarized here for completeness.

Fig. 2. Coaxial wave port setup for the PTH model.

Fig. 3. Neural network architecture.

The NN is composed of fully connected (FCNN), transposed
convolutional (TCNN), learnable smoothing, and causality and
passivity enforcement layers, as depicted in Fig. 3. The FCNN
takes the geometrical parameters as inputs and maps them
to a latent space. The TCNN efficiently converts the latent
variables to vectors without suffering from scaling issues
[9]. This is extremely important when a response over a
wide spectrum is predicted. The real part of the S-parameters
(TCNN output) is then smoothened via a Gaussian filter,
with a learnable standard deviation, and fed into the causality
enforcement layer, which computes the imaginary part of the
S-parameters using Hilbert transform relations. Finally, the
passivity enforcement layer takes the complex S-parameters,
computes the upper bounds for the associated eigenvalues, and
applies compensation for passivity violations. The output is a
4× 4 complex S-parameter matrix for the differential pair.

IV. NUMERICAL RESULTS

The accuracy of the proposed divide and conquer model-
ing approach was tested using different SLI geometries and
comparing them with full wave simulation results. Figs. 4
and 5 compare the single-ended magnitude and phase of the
predicted return loss of an SLI of a 5-2-5 package with
those of the full wave simulations. In these figures, “Cascade
3D EM” refers to the case where the building blocks were
simulated separately and their S-parameters are then cascaded.
In contrast, “Full 3D EM” refers to the case where the entire
geometry is simulated as a single model from the feed to the
BGA. As seen from the figures, even at low magnitude levels,
there is a very good agreement between the results, verifying
the effectiveness of the NN predictions and the divide and
conquer modeling approach.



Fig. 4. Return loss magnitude comparison.

Fig. 5. Return loss phase comparison.

Furthermore, Figs. 6 and 7 show the comparison of the
single-ended insertion loss and far end crosstalk, respectively,
for two different package stack-ups. The results show that the
proposed approach provides sufficiently accurate predictions
for packages with different layer counts, by simply changing
the number of cascaded build-up layers, with the correct ge-
ometry and port settings. Although there are some differences
between the NN predictions and simulation results, the accu-
racy level is acceptable for a quick low-fidelity analysis, which
can provide a good initial point for the final optimization.

Fig. 6. Insertion loss comparison.

V. CONCLUSION

This study reports an NN-based modeling tool for the
electrical analysis of SLIs and discusses some practical im-
plementation details. To introduce some flexibility, the SLI
geometry is divided into 4 building blocks and a separate NN
model was trained for each block. The electrical response of
the SLI is obtained by cascading the S-parameter matrices
of the building blocks. This approach enables modeling of

Fig. 7. Far end crosstalk comparison.

packages with different layer counts without generating new
data sets and retraining. Special care should be given to
excitation to minimize the cumulative impact of port parasitics
and higher order mode propagation. When correctly imple-
mented, the proposed model was demonstrated to accurately
predict SLI performance over a wide range of frequencies. The
results proved that NN-based models combined with flexible
modeling approach is an effective tool for fast assessment of
SLI geometries, particularly at the early design stages.
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