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Abstract—In this paper, we propose artificial intelligent (AI)-
router, a reinforcement learning (RL)-based auto-router consid-
ering signal integrity (SI), for the first time. Our algorithm has
two main stages. At first, we design the transformer-based novel
neural architecture considering the keep-out region, crosstalk
region, and the number of vias for SI optimization. Then, the
designed neural network is optimized by the policy gradient, one
of the RL algorithms. Compared with the conventional maze
routers, the A* algorithm, and the lee algorithm, it is verified
that our AI-router outperforms the algorithms in terms of wire-
length and crosstalk in a specific test case. Furthermore, it is
shown that AI-router successfully performs multi-layer routing
which is not feasible with conventional maze routers.

Index Terms—AI-router, reinforcement learning, signal in-
tegrity, transformer

I. INTRODUCTION

Recent technology trends require terabytes per second band-
width. To meet these demands, not only the data rate but
also channel density has been significantly increased. More-
over, high integration and miniaturization of modern elec-
tronic devices critically increase design complexity in channel
routing. Therefore, automatic routing considering wire-length,
crosstalk, via, and layer selection became a more challenging
problem.

Previous researches on auto-routing mainly consist of two
stages that global routing strategies and detailed routing [1].
Global routing strategies provide a feasible routing plan in-
cluding routing order. After that, each pin-to-pin routing is
completed by avoiding obstacles using a maze router. How-
ever, existing maze routers have two major limitations. Firstly,
existing maze routers are not smart enough to perform detailed
routing considering SI [2]-[3]. Because the maze-routers can-
not consider crosstalk and vias, several hand-crafted heuristics
have to be designed to control the maze router for ensuring
SI which leads to increases entire algorithm’s complexity.
Secondly, existing maze-routers have the disadvantage of
modifying the entire algorithm for solving the problem which
contains additional constraints and optimization variables.

On the other hands, it has been proven several times that
learning-based methods can be used universally in a variety
of situations without major modifications to the algorithm. In
particular, recent studies have suggested that reinforcement

Fig. 1. Overview of training AI-router by RL. Randomly generated maze
problems are training data for transformer-based encoder-decoder, which is
a policy network. Then the policy network decides action which makes the
partial permutation of input coordinate. The value of action is evaluated by the
reward function which contains wire-length, crosstalk, and number of vias.
learning shows effective results in combinatorial optimization
problems including routing and hardware design [4]-[5].

In this paper, we propose RL-based auto-router considering
SI to overcome the limitation of the previous maze routers in
terms of SI and versatility. We construct the encoder-decoder
model based on the transformer, a state-of-the-art neural
network in natural language processing and learning-based
combinatorial optimization [5]-[6]. The policy gradient is used
for training the encoder-decoder model [7]. For verification,
the routing performance of the lee algorithm, the A* algorithm,
and the proposed AI-router is compared in terms of wire-
length and crosstalk [2]-[3]. Furthermore, we demonstrate that
the proposed AI-router performs multi-layer routing which is
infeasible to conventional maze routers.

II. PROPOSAL OF REINFORCEMENT LEARNING-BASED
AI-ROUTER

As shown in Fig. 1, a randomly generated maze problem
is used as training data for the transformer-based encoder-
decoder model. Through via, it is possible to move to another
layer, then another maze problem of the changed layer is
provided. RL is used for training policy networks which
determines an optimal routing path. The trained policy network
eventually becomes AI-router. Table I contains variables for
the equations described in section II.A and II.B.
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TABLE I
EXPLANATION OF VARIABLES FOR EQUATIONS.

Variables Representation Description
X {x = (x, y, γz,mo, pc, pl)} Input coordinates

m0 m0 =

{
1 (x, y, z) ∈ O

0 otherwise
Obstacle mark

pc pc =

{
2 (x, y, z) ∈ C

0 otherwise
Penalty of Xtalk

pl pl =

{
0.5 (x, y, z) ∈ L

0 otherwise
Penalty of loosely Xtalk

γ γ = 30 Layer changing penalty
π {π1, π2, ..., πn} , xπi ∈ X Output Permutation
O {(xi, yi, zi)} Obstacle region
C {(xi, yi, zi)} Xtalk region
L {(xi, yi, zi)} Loosely Xtalk region

Fig. 2. Conceptual view of encoder architecture. Input nodes x are embedded
to high dimensional vectors z by multi-head attention, feed forward, and skip
connection.
A. Neural Architecture of AI-router

As illustrated in Fig. 2, the encoder architecture mainly
consists of multi-head attention (MHA), feed forward (FF),
and skip connection (Skip) which embed input node to high
dimensional hidden nodes zN . A detailed equation of the Skip,
MHA, and FF is explained in [5]-[6].

First, the input node is embedded through the linear projec-
tion as the following equation:

z0i =Wxi + b (1)

W and b are learnable parameters. Then, the hidden nodes zN

are made from the embedded node with MHA as the following
equation:

zi+1
j = Skipj(FF (Skipj(MHAj(z

i
1, z

i
2, ..., z

i
n)))) (2)

Then the hidden nodes are propagated forward the decoder
as illustrated in Fig.3. The main purpose of the decoder is
to output the stochastic policy. To be specific, context vector
c creates a policy for the next selection, referring to the
previous node, the average node of all, the average node of
obstacles(keep-out region and pre-routed region), the average
node of coupled crosstalk region, the average node of loosely-
coupled crosstalk region and the destination(target pin) node:

ck = Fθ1([z
N
k−1, z

N
n ]) + Fθ2([z

N
mean, z

N
o , z

N
c , z

N
l ]) (3)

Fθ1 and Fθ2 is fully-connected layer with learnable parameter
θ1,θ2. As shown in (5), the context vector passes MHA and
becomes query c′.

c′k =MHA(zN1 , ..., z
N
n , ck) (4)

Fig. 3. Conceptual view of proposed decoder processing. The decoder uses
the context vector c and MHA to determine the next node. The determined
node affects the selection of a next node by changing the context vector c.
The decoder eventually creates a routing path of π.

Then the partial policy of selecting the next action can be
expressed as follows:

uj =

{
10 tanh(

(Qc′)t(Kzj)
4 ) nodes ∈ Action

−∞ otherwise
(5)

Pθ(πi = j|X,πi−1, πn) =
euj∑n
k=1 e

uk
(6)

Q and K in (5) are learnable parameters which make query and
key, respectively. A detail of the query and key is introduced
in [5]-[6]. The Action in (5) contains left, right, up, down, 45-
degree routing and layer changing through via. Also, obstacles
are not possible to be selected by the Action.

Therefore the policy of routing permutation π is

Pθ(π|X) =

n−1∏
k=2

Pθ(πk|X,πk−1, πn) (7)

B. Training the AI-router with Reinforcement Learning

The policy gradient is used to train the AI-router architec-
ture [7]. When we get permutation of nodes π, we calculate
the cost of AI-router as follows:

L(π) =

n−1∑
k=1

(
g(xπk+1

− xπk) + pc(xπk) + plc(xπk)
)

(8)

g(x) =
√
x2 + y2 + γ2z2 (9)

To estimate the crosstalk in the cost function L(π), we set
the crosstalk region and loosely crosstalk region at 1w and 2w
distances based on the pre-routed channel, respectively. The
w is the width of the routing channel. In the end, the total
crosstalk is estimated by counting the number of blocks that
are invading crosstalk regions on a grid. A block in the grid is
a path which is made by node selection from the xπk to xπk+1

in (8).
Also, we assign γ as a penalty for layer change. When

changing a layer, it greatly interferes with the routing plan of
other layers. Also, the via transition effect adversely affects
SI. Therefore, layer change through via is not recommended



Fig. 4. Loss graph of the AI-router. The validation loss converges just as
training loss.

TABLE II
RESULT OF THE TEST CASE IN FIG 5. BOLD MEANS THE BEST

PERFORMANCE.
Method Wire-length # of Xtalk region (1w)

Lee Algorithm 3.8mm 16
A* Algorithm 3.16mm 5

AI-router (ours) 3.16mm 0
except the case that routing is not feasible on a current layer,
a high penalty of γ = 30 is given.

Eventually, the objective function is defined by the expec-
tation of the cost L(π) with an output probability of pθ in (8).
θ represents the whole parameters from the encoder-decoder
architecture in II.A.

J(θ|X) = Epθ [L(π)] (10)

We optimize θ using the gradient of J(θ|X) with Adam
optimizer, learning rate 0.00001 [8]. The gradient of the
objective function can be derived as follows:

∇J(θ|X) = Epθ [(L(π)− b(X))∇ log pθ(π|X)] (11)

The b in (11) is the rollout baseline for reducing variance [5].

III. VERIFICATION OF THE PROPOSED METHOD

For training AI-router, 12800 randomly generated maze
data are used. Each maze problem has a total of 800 nodes
with two signal layers. Also, 2560 validation data are used
to validate AI-router’s learning-convergence and flexibility in
various environments. As shown in Fig. 4, the validation loss
of AI-router is converged just as it’s train loss which means
AI-router is stably trained.

To verify the trained AI-router’s performance, we set two
test cases. Firstly, routing performances of the lee algorithm,
A* algorithm, and AI-router are compared in a single-layer
test case. Secondly, the AI-router is tested on a multi-layer
test case to verify AI-router’s capability to perform multi-layer
routing.

As illustrated in Fig. 5 and Table II, AI-router makes a
better decision that makes shorter and less crosstalk routing
than the Lee-router. Also, AI-router makes less crosstalk than
the A* algorithm while preserving wire-length. Fig. 7 shows
the results of the AI-router in a multi-layer routing test case. It
can be observed that the AI-router finds the via location that
minimizes crosstalk and wire-length by considering the two
layers of keep-out regions and pre-routed regions.

IV. CONCLUSION

In this paper, we proposed an RL-based AI-router con-
sidering wire-length, crosstalk, and vias. Our AI-router out-
performed conventional maze routers in terms of SI in a

Fig. 5. Test case comparison between lee algorithm, A* algorithm, and AI-
router. Because the keep-out region is blocking the middle between the source
pin and target pin, the proposed AI-router chooses the routing to bypass
downwards considering both crosstalk and wire-length.

Fig. 6. Result of multi-layer routing by AI-router. Because signal 1 in layer 1
is blocking the path between the source pin and target pin, AI-router decides
to change the signal layer through via. The AI-router decides via location
considering the routing environment of layer 1 and layer 4.

specific test case. Because of the versatility of the learning-
based method, our proposed algorithm can be further applied
to various application targets by just fine-tuning the objective
function of RL.
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