
A Tunable Neural Network based Decision
Feed-back Equalizer model for High-speed Link

Simulation
Thong Nguyen and Jose Schutt-Aine

Department of Electrical and Computer Engineering.
University of Illinois Urbana-Champaign

Urbana, IL 61801, USA
tnnguye3, jesa@illinois.edu

Abstract—This paper presents a model combining a feed-
forward neural network (FNN) with a recurrent neural network
(RNN) to model Decision Feed-back Equalizer (DFE). By using
the FNN as the mapping between the tap values and the dynamic
behavior of the DFE, a complete model of the DFE can be
constructed for channel simulation. The paper shows a 2-tap
DFE example in which excellent agreement between the model
generated by the proposed method and transient simulation can
be observed.

I. INTRODUCTION

Losses and dispersion caused by passive channels in high-
speed serial links are compensated by equalization circuits.
Receiver equalization consists of continuous-time linear equal-
ization (CTLE) and decision feed-back equalization (DFE).
CTLE is linear and typically modeled as rational transfer func-
tions which can also be incorporated into the channel while
DFE is nonlinear, hence, needs separate handling. Leveraging
success of deep learning methods in time-series data modeling,
[1], [2] uses an Elman RNN [3] to model high-speed link
buffers. However, the equalization parameters were fixed when
the RNN learns the input - output mapping in [2]. In this work,
we extend the work done in [2], allowing modeling a complete
model of DFE using an FNN followed by the Elman RNN for
sequence mapping.

In the next section, a brief description DFE is presented
to recall the problem at hand. Section III is dedicated to
explain the details of our proposed architecture allowing a
complete DFE tunable model. A 2-tap DFE example is shown
in Section IV to demonstrate the effectiveness of the proposed
method. It also serves as a step-by-step guide on how to
train and use the proposed model for simulation. Conclusion
and possible further extension of this work is presented in
Section V.

II. RECEIVER DECISION FEEDBACK EQUALIZATION (DFE)

A passive, lossy channel acts similarly to a low pass filter in
the sense that the higher the frequency component, the more
loss happens. As the result, a sharp rising/falling signal after
passing through a channel will lose its high frequency contents
which makes its rise/fall time slower, the signal spreads out

longer. In most cases, it could spread out to multiple bit periods
(also known as unit interval, or UI) causing a phenomenon
called intersymbol interference (ISI).

Figure 1 shows how a bit error could happen due to ISI.
The figure was exaggerated for illustration purposes. When
the output of the prior bit (in this case, a logical 1) spreads
out, it interferes with the next bit (in this case, a logical 0),
alters the voltage waveform leading to the wrong logical level
recognized.

Fig. 1. Bit error caused by ISI.

The basic principle of DFE is using a slicer circuit to sample
and quantize the input waveform at locations that are multiple
UIs away from each other, normally known as the cursor
values (ai’s), then using these cursor values, the DFE circuit
subtracts ISI from the incoming signal via a feedback FIR
filter

vout[n] = vin[n]−
N∑
i=1

aidRX [n− i] (1)

Figure 2 shows an example of different number of tap DFE
circuits on an unequalized waveform. Notice how the number
of abrupt drops in the equalized waveform matches the number
of DFE taps used. It is also important to notice that the drops
associated with higher tap numbers are smaller. This is due to
the fact that the higher order post-cursors are always smaller
in magnitude.

III. PROPOSED NEURAL NETWORK ARCHITECTURE

In this work, under the assumption that the DFE effect is K
time step dependent, we use an Elman RNN to represent the

978-1-7281-6161-7/20/$31.00 c©2020 IEEE

Fig. 2. Example waveform under DFE effect with different number of taps

mapping between a K-step windowed sample of inputs and
the next time step output. Mathematically, the K time step
truncated full stack RNN is

{
ht = g

(L)
h ◦ g(L−1)

h ◦ · · · ◦ g(2)h ◦ g
(1)
h (xt,h0)

yt = go (ht) ,
(2)

where A ◦ B = A (B (x)) is the composition operation,
xt =

[
xt−(K−1) xt−(K−2) · · · xt

]
∈ Rd1×K , and

ht =
[
ht−(K−1) ht−(K−1) · · · ht

]
∈ Rlh×K , ht ∈

Rlh where lh is the dimension of the hidden state at time
step t, gh (·) represents the long-short term memory (LSTM)
mapping which reads

it = σ (Wiixt +Whiht−1)
ft = σ (Wifxt +Whfht−1)
gt = tanh (Wigxt +Whght−1)
ot = σ (Wioxt +Whoht−1)
ct = ftct−1 + itgt
ht = ot tanh (ct) ,

(3)

where ht is hidden state at time t, ct is called the cell state,
and it, ft, gt and ot are the input, forget, cell and output gates
respectively. All of the W ’s are learnable weight matrices.,
h0 ∈ Rlh×L is the initial state for every K time step dynamic.

The gradient of the loss function of a 1 layer, K time step
unrolled RNN at time t w.r.t. any parameter θ can be written
as sum of the loss function within the most recent K time
steps

∂L
∂θ

=

t∑
τ=t−(K−1)

∂Lτ
∂θ

, (4)

where
∂Lτ
∂θ

=

τ∑
j=t−(K−1)

∂Lτ
∂yτ

∂yτ
∂hτ

∂hτ
∂hj

∂hj
∂θ

(5)

with hj , hτ are given by (2) at t = j and t = τ . Each term
∂Lτ
∂θ

represents the partial-time gradient of the error in the
past time steps (j’s) up to the current time step (τ). Figure 3

shows a K-step RNN unrolled in time and detailed of a stack
L layers of RNN cells.

Fig. 3. K-step RNN unrolled in time

In order to represent the effect of the tap values to the RNN
dynamic behavior, we use an FNN which takes the tap values
as input then take its output to feed into the RNN as h0.
An FNN is the composition of multiple weighted nonlinear
functions and can be mathematically described as

ŷ = fL ◦WLfL−1 · · · ◦W2f1 ◦W1x (6)

The input x ∈ Rd1 , at the lth stage, fl is a non-linear activation
function composed with fl−1 weighted by the weight matrix
Wl ∈ Rdl+1×dl , where dl+1 and dl are the dimension of the
output of layer l + 1 and that of layer l, respectively; l =
1, 2, ..., L , ŷ ∈ RdL+1 is the prediction of the FNN. Since
both input and output are real values, it is most convenient to
choose mean-square error (MSE) loss function. MSE loss is
calculated as the square of 2-norm of the error vector.

L (ŷ, y) = MSE (ŷ, y) =
1

dL+1
‖ŷ − y‖22 (7)

The weights of both networks are learnt at the same time, after
backpropagation through time in RNN, the gradient is also
backpropagated through the FNN so its weights can also be
updated. Figure 4 visualizes how FNN and RNN are combined
to make a tunable model in this work.

Fig. 4. Proposed architecture

IV. EXAMPLE

In this section, we will demonstrate the proposed method
using data from a 2-tap DFE for an about 1.7ns delay differ-
ential channel transmitting data at 32 Gbps. The tap values
are normalized so that they span from 0 to 1. Negative values
of the taps will amplify the post-cursor instead of cancelling
it, hence, are excluded. The channel pulse response and the
equalized response are shown in Figure 5. It can be seen that
there are 1 pre-cursor and 2 significant post-cursors. The effect
of DFE is reflected clearly on the equalized waveform which is
cancelled out exactly at 2 most significant sampled post-cursor
locations.

Fig. 5. Single pulse response and DFE effect

To prepare training data, many combinations of tap values
are swept, the unequalized and equalized waveform is col-
lected for each combination of tap values. In this example, we
chose a 2-layer FNN which has 10 neurons and 20 neurons,
respectively and a 6-layer, LSTM-cell RNN whose hidden
state is in R30. Adam [4] is used for optimization with initial
learning rate being 0.01. Also, RNN when trained was set
to start out in teacher-force mode but we used a schedule
sampling to choose between known data and RNN-generated
data such that at the beginning of training, the RNN is fed
with more known data (from training data) but as training
progresses, the RNN is fed with more of its own generated
data. More details about different modes of RNN-based model
were presented in [2] and references therein.

After trained, the RNN is set to read-out mode and the
model is tested with unseen data. Excellent agreement between
the proposed model and the transient simulation is observed,
the results are shown in Figure 6. Each color in Figure 6 is
the output response of DFE model for different tap values.

V. CONCLUSION AND FUTURE WORK

In this work, we have combined an FNN and an RNN
to create a tunable model that can completely replace the
transistor model for different values of taps. The validation
result on a pulse response matches very well with the transistor
simulation result. This model can be exchanged between
vendors and designers helping the former to protect their IP

Fig. 6. Prediction (dot) vs. transient waveform (solid) for unseen tap
combinations (different colors)

and ensure accuracy for latter at the same time. For EDA
vendors, implementation of these kinds of models is straight
forward and simple. Exchanging models between vendors and
designers would be also simple because all that is needed is
the network architectures and its weights. Deep learning com-
munity has proposed ONNX [5], an open source framework,
built as an effort to offer a unified API to all neural network
models so it can be exchanged and used no matter how and
by which framework it was developed and trained.

In a future work, we will report how the proposed model
would be trained and validated in a channel simulation to
generate eye diagrams. A longer term extension of this work
is to include the adaptivity of equalization schemes into the
model.

ACKNOWLEDGEMENT

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. CNS 16-24810 for
Center for Advanced Electronics through Machine Learning
(CAEML), the U.S Army Small Business Innovation Research
(SBIR) Program office and the U.S. Army Research Office
under Contract No.W911NF-16-C-0125.

REFERENCES

[1] T. Nguyen, T. Lu, J. Sun, Q. Le, K. We, and J. Schut-Aine, “Transient
Simulation for High-Speed Channels with Recurrent Neural Network,”
in 2018 IEEE 27th Conference on Electrical Performance of Electronic
Packaging and Systems (EPEPS), Oct 2018, pp. 303–305.

[2] T. Nguyen, T. Lu, K. Wu, and J. Schutt-Aine, “Fast Transient simulation
of High-Speed Channels using Recurrent Neural Network,” 2019.
[Online]. Available: https://arxiv.org/abs/1902.02627

[3] J. L. Elman, “Finding structure in time,” COGNITIVE SCIENCE, vol. 14,
no. 2, pp. 179–211, 1990.

[4] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

[5] J. Bai, F. Lu, K. Zhang et al., “ONNX: Open Neural Network Exchange,”
https://onnx.ai/, 2019.

