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Abstract—A novel approach to evaluation of electrostatic
multilayered media Green’s functions is presented. Total field
of the point charge in layered substrate is represented as a sum
of known closed-form incident field in homogeneous space and
scattered field which accounts for the effect of the layers. The
former accurately approximates the field near the source while
the latter is approximated with cylindrical waves and accurately
represents the intermediate and far fields. The cylindrical waves
approximation is performed via numerical solution of the dif-
ferential equation formulated with respect to the scattered field
as opposed to the total field as it was done in previous work.
The spectral domain scattered field solution is cast into the pole-
residue form. It allows for the subsequent analytical evaluation
of the Sommerfeld integrals producing closed-form space domain
approximation.

Index Terms—Green’s function, FEM, scattered field formula-
tion

I. INTRODUCTION

Evaluation of the multilayered medium Green’s function
is vital in many practical applications of electromagnetic
analysis including design of microwave circuits and micro
strip antennas, modeling of high-speed interconnects. The
common practice to obtain the spatial domain Green’s function
is to solve the 1D spectral domain boundary value problem
(BVP) analytically [1], then perform the inverse Fourier-
Bessel transform through approximating the Green’s func-
tion spectrum with known functions allowing for subsequent
analytical evaluation of the inverse Fourier-Bessel transform
[2], [3]. Depending on the choice of fitting functions, the
resultant space domain Green’s function loses its accuracy
in either near zone [2] or far zone [3]. In the former, the
error in the near field is due to spherical waves dominating
the solution and being approximated with a counted number
of cylindrical waves. In order to develop uniformly accurate
approximation, we decompose the spectrum of the total field
into the incident and scattered field contributions. The 1D
differential equation governing the spectrum of the layered
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medium Green’s function is formulated with respect to the
scattered field rather than the total field as it was done
previously [2], [4]. The boundary conditions at layer inter-
faces, based on the continuity of Green’s function and the
normal component of electric flux density are enforced. As
a result, the pole-residue approximation of the scattered field
spectrum is obtained which leads to accurate cylindrical wave
approximation in the space domain in both the intermediate
and far zones, since the singularity of Green’s function resides
in the incident field. The incident field is subsequently added in
the analytical form. Hence, the total field accurately describes
the field near the source. The proposed method is similar to [5]
in that it approximates the scattered field Green’s function with
a rational function. However, such approximation is achieved
through error-controllable solution of the 1D BVP for the
scattered field as opposed to the fitting of its analytically
determined spectrum with rational function via VECTFIT
procedure [6], latter not being an error-controllable process.

II. NUMERICAL SPECTRAL DOMAIN SCATTERED
POTENTIAL EVALUATION

Consider a parallel plate waveguide bounded by PEC planes
situated at elevations z = 0 and z = d along the direc-
tion of stratification z. The waveguide is filled with planar
layered medium. In each layer, the dielectric is assumed to
be homogeneous. For a point charge located on the z axis
at elevation z′ in layer with permittivity εsrc, the boundary
value problem Green’s function (i.e. electrostatic potential due
to point charge) is governed by the Poisson’s equation in
cylindrical coordinates

∇2Gtot(ρ, z; z′) = − 1

εsrc

δ(ρ)

2πρ
δ(z − z′). (1)

Applying forward Fourier-Bessel transform [1]

G̃tot(λ, z; z′) =

∫ ∞
0

Gtot(ρ, z; z′)J0(λρ)ρdρ, (2)
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to both sides of (1), we reduce it to the following ordinary dif-
ferential equation (ODE) with respect to the Green’s function
spectrum G̃tot [2]

d2

dz2
G̃tot(λ, z; z′)− λ2G̃tot(λ, z; z′) = − 1

2πεsrc
δ(z − z′).

(3)

The spectral domain Green’s function G̃tot is constrained
by the boundary conditions at dielectric interfaces and the
bounding PEC plates. The boundary conditions at each ith
dielectric interface between the layers with elevation zint,i

G̃tot
∣∣∣
z+int,i

= G̃tot
∣∣∣
z−int,i

, ε+i
dG̃tot

dz

∣∣∣
z+int,i

= ε−i
dG̃tot

dz

∣∣∣
z−int,i

,

(4)

represent the continuity of the electrostatic potential and
normal component of the total electric flux, respectively. The
PEC boundary conditions for spectral domain Green’s function
G̃tot are

G̃tot(λ, 0; z′) = 0, G̃tot(λ, d; z′) = 0. (5)

Both sets of boundary conditions (4) and (5) are resulted from
the Fourier-Bessel transform of the corresponding boundary
conditions for the Green’s function in the spatial domain.

A. Spectral 1D BVP for the Incident Field Green’s Function

We define the incident field Green’s function as the response
to the point charge source in the parallel plate waveguide
filled with homogeneous dielectric whose permittivity is εsrc
as in the layered problem. The 1D BVP for the incident field
consists of the ODE

d2

dz2
G̃inc(λ, z; z′)− λ2G̃inc(λ, z; z′) = − 1

2πεsrc
δ(z − z′),

(6)

in conjunction with the boundary conditions at the PEC planes

G̃inc(λ, 0; z′) = 0, G̃inc(λ, d; z′) = 0, (7)

and boundary conditions at the ith dielectric interface z =
zint,i, i.e., both the incident potential and the incident electric
flux are continuous:

G̃inc
∣∣∣
z+int,i

= G̃inc
∣∣∣
z−int,i

,
dG̃inc

dz

∣∣∣
z+int,i

=
dG̃inc

dz

∣∣∣
z−int,i

. (8)

B. Spectral 1D BVP for the Scattered Green’s Function

The scattered field Green’s function is defined as G̃sca =
G̃tot−G̃inc. Subtracting the left hand side of equation (6) from
the left hand side of (3) and performing the same subtraction
for their right hand sides produces the following 1D ODE for
the scattered field Green’s function

d2

dz2
G̃sca(λ, z; z′)− λ2G̃sca(λ, z; z′) = 0. (9)

Executing similar subtractions for the left and right hand sides
of the boundary condition equations for the total and incident

field Green’s functions we obtain the boundary conditions for
the scattered field

G̃sca
∣∣∣
z+int,i

= G̃sca
∣∣∣
z−int,i

ε+i
d(G̃sca + G̃inc)

dz

∣∣∣
z+int,i

= ε−i
d(G̃sca + G̃inc)

dz

∣∣∣
z−int,i

(10)

G̃sca(λ, 0; z′) = 0, G̃sca(λ, d; z′) = 0. (11)

C. Numerical Solution of 1D BVP for Scattered Field Spec-
trum

A numerical solution of the 1D BVP for the scattered
Green’s function with Finite Difference (FD) [4] or Finite Ele-
ment Method (FEM) [7] yields the system of linear equations
with respect to the discretized scattered field Green’s function
G̃sca

([A] + λ2[B])G̃sca = b, (12)

where the excitation vector b has non-zero values at the entries
associated with the dielectric interfaces as opposed to the
excitation vector in analogous system of algebraic equations
occurring in the total field formulation [2] where non-zero
values in the excitation vector occur at entries corresponding
to the location of the source. Performing eigenvalue decom-
position on [B]−1[A] similarly as in [2], we get

G̃sca = ([A] + λ2[B])−1b = [E]([D] + λ2[U ])−1[T ]b,
(13)

where [E][D][E]−1 = [B]−1[A], [T ] = ([B][E])−1. Denoting
the set of all indices of nodes at the dielectric interfaces as
{Sint}, from (13) we get ith unknown

G̃scai = G̃sca(λ, zi; z
′) =

∑
j∈Sint

bj

Np∑
k=1

EikTkj
Dk + λ2

. (14)

Expression (14) has the same form regardless the numerical
method used to solve the 1D BVP for G̃sca. In case second
order FEM is used for the solution, for example,

bj = −
2(εij+1 − εij )
εij+1 + εij

G̃inc

dz

∣∣∣
zint,ij

, (15)

where ij is the index of the medium layer associated with the
index j that is the index of the node overlapping the dielectric
interface. Performing inverse Fourier-Bessel transform [2] on
(14), we have

Gsca(ρ, zi; z
′) =

∑
j∈Sint

Cij

 Np∑
k=1

EikTkjH
(2)
0 (−i

√
Dkρ)

(16)
∞∑
n=1

g(ij , n; z
′)

Dk − a2n
−

Np∑
k=1

Nt∑
n=1

g(ij , n; z
′)H

(2)
0 (−ianρ)EikTkj
Dk − a2n


where

Cij = −
i(εij+1 − εij )π

(εij+1 + εij )εsrcd
2
, an =

nπ

d
, (17)
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Fig. 1: Spatial domain total field Green’s function behavior in
the near and far zones of the point source.

the square root
√
Dk is chosen such that the field satisfies the

radiation condition, and

g(ij , n; z
′) = n cos

(nπzint,ij
d

)
sin

(
nπz′

d

)
. (18)

In (16), the following series can be analytically evaluated in
closed form by Poisson summation formula. For example, for
the case when Dk has positive real value and zint,ij > z′,

∞∑
n=1

g(ij , n; z
′)

Dk − a2n
=

d2

8π

(
e−i
√
Dk(zint,ij−z

′) + ei
√
Dk(zint,ij+z

′−2d)

1− e−i2
√
Dkd

− e−i
√
Dk(zint,ij+z

′) + ei
√
Dk(zint,ij−z

′−2d)

1− e−i2
√
Dkd

+
ei
√
Dk(zint,ij−z

′) + e−i
√
Dk(zint,ij+z

′−2d)

1− ei2
√
Dkd

− ei
√
Dk(zint,ij+z

′) + e−i
√
Dk(zint,ij−z

′−2d)

1− ei2
√
Dkd

)
.

Other cases can be treated analogously and are not shown here
due to shortage of space.

The second sum over n in (16) in the bracket was an infinite
sum. It can be truncated to a given precision since

H
(2)
0 (−ianρ) = H

(2)
0 (−inπ

d
ρ) ∼

√
2i

π nπd ρ
e−anρei

π
4 , (19)

is exponentially decaying in magnitude for large number of n.
For given error tolerance δ, we keep the first Nt terms, where

Nt =

⌈
−d ln δ

ρπ

⌉
. (20)

III. NUMERICAL RESULTS

To validate the proposed scattered field formulation, a three
layer substrate with total thickness d =1 µm is considered.
From bottom to top, the three layers have thicknesses 0.2 µm,
0.4 µm, and 0.4 µm, and relative permittivities εr = 5, 1, 10,
respectively. The source is located at elevation z′ =0.6 µm.
The behavior of spatial domain total Green’s function Gtot

obtained using the proposed scattered field formulation (SFF)
and the total field formulation (TFF) [2] are shown in Fig. 1.
In Fig. 1a and 1b, the observation location is fixed as z =
0.38 µm, whereas in Fig. 1c, ρ is fixed as 0.001d and in Fig.
1d, ρ is fixed at 1.6d.

One can observe that the proposed scattered field for-
mulation maintains high accuracy of the Green’s function
approximation both in the vicinity of the source, as can be
seen from Figs. 1a and 1c, and far from it, as shown in Figs.
1b and 1d. Note that in Figs. 1c and 1d z spans full thickness,
i.e. z ∈ [0, d]. In the far region, both methods provide accurate
results manifested in Fig. 1b, where ρ ∈ [2d, 4.34d], and Fig.
1d, in which ρ is fixed at 1.6d and observation z covers entire
interval between the PEC plates of the waveguide.

IV. CONCLUSION

This paper introduces a new methodology for the closed
form evaluation of the electrostatic Green’s function in
shielded planar layered medium. The proposed scattered field
formulation of the Green’s function allows to construct uni-
formly accurate Green’s function approximation both in the
near and far zone of the point source. The method numerically
solves the 1D boundary value problem for the spectrum of the
scattered field Green’s function. It is followed by the eigen-
value decomposition of the pertinent matrices, which allows
to cast the spectrum of the scattered field Green’s function
into the pole-residue form and enable analytic evaluation of
the Sommerfeld integrals. The previous version of the method
which performed analogous operations on the total field of the
Green’s function failed to provide accurate field approximation
in the near vicinity of the point source.
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