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Abstract—Determining optimal equalization settings in high-
speed bus design simulations is becoming more important due to 
increased complexity and data rates of current server systems, but 
it is also time and resource consuming. In this paper, a 
probabilistic machine learning technique, Bayesian Active 
Learning using Dropout (BAL-DO), is utilized to perform RX 
equalization and optimization to address this issue. Largest HEYE 
opening and corresponding equalization settings are obtained with 
high prediction accuracy without performing extensive time-
domain analysis, thereby significantly reducing the cost of 
engineering time and computational resources.   

I. INTRODUCTION 
 The demand for faster data rates and more versatile 
functionality in computing systems results in more complex 
systems with a large number of components and interconnects. 
A key part of high-performance systems are board-to-board 
interconnects for the high-speed links which transmit signals 
between components on different boards. Such links can exist in 
between processors and other modules such as FPGAs, memory 
controllers and expanders. Due to the increase in complexity, 
signal integrity (SI) properties such as insertion loss (IL) and 
crosstalk (XT) can vary significantly from channel to channel, 
which complicates confirming the channel compliance for sign-
off and production. To maximize and stabilize the performance 
of channels that contain cables, connectors and PCBs, channel 
equalization designed in I/O circuitry is required to have 
stronger capability and robustness. Various equalization 
schemes such as feed-forward equalizer (FFE), decision feed-
back equalizer (DFE) and continuous time linear equalizer 
(CTLE) can be implemented on the transmitter (TX) side and 
the receiver (RX) side. A direct consequence of adding more 
equalization capabilities is the increased complexity of the I/O 
circuitry and larger design space for SI simulations. Normally, 
SI engineers need to perform time-domain simulations by 
sweeping most of the equalization settings to obtain desired eye 
sizes for different channel configurations. However, as the 
combinations of the equalization settings increase exponentially, 
sweeping through the entire design space becomes extremely 
time and resource consuming and, ultimately, impractical. It is 
critical for SI analysis to find an efficient method that can reduce 
the optimization time as well as resources and allow the designer 
to understand the preferred equalization settings for various 
channel configurations. 

An intuitive idea is to apply machine learning (ML) 
techniques to these problems [1][2]. However, conventional ML 
methods are data hungry, and difficult to capture domain 
expertise. Equalization optimization with time-domain analysis 
requires intensive computational resources, limiting the amount 

of data being available in many cases. A probabilistic method 
that predicts a posterior distribution rather than deterministic 
predictions is a better candidate for limited training data 
scenarios.  Recently, a novel ML technique based on Bayesian 
Active Learning (BAL) has been developed [3]. A new 
algorithm, Bayesian Active Learning using Dropout (BAL-DO) 
was proposed to achieve accurate data space exploration when 
learning data is limited. This has been tested on IBM’s 
POWER9 channel, and successfully acquired the worst-case 
horizontal eye (HEYE) opening with high accuracy among large 
number of channels in minimum amount of time-domain 
simulations. The main advantage is the significant reduction of 
computational costs while maintaining high accuracy, and this 
has been demonstrated in [3] by comparing with other machine 
learning methods. In this work, the BAL-DO algorithm is 
extended to include RX equalization for a high-speed memory 
channel [4] to determine the equalization setting that provides 
the largest HEYE along with the confidence bounds of the 
resulting eye which is a key feature of BAL-DO. 

The BAL-DO technique mainly consists of two parts, the 
optimization stage and the active learning stage, and they are 
combined associatively in the algorithm [3]. As the code starts 
with no training data, one set of initial training data is generated 
and fed into the program. In the optimization stage, the next 
sampling point is selected using Bayesian Optimization (BO) 
method with self-learning acquisition function strategy obtained 
using a Gaussian Process (GP) model. The goal for the active 
learning part is to minimize the uncertainty of the GP predictions 
for non-simulated equalization settings by selecting the setting 
that maximizes entropy. The information from both stages is 
combined in a single GP while using a dropout technique to 
prioritize optimization over learning [3]. The next sample is then 
evaluated using the simulation framework to get the 
corresponding HEYE, followed by re-training the GP and 
proceeding to the optimization stage again. 

II. SIMULATION PROCEDURE AND SETUP 
The simulation framework in this paper is based on a high-

speed differential channel passing signal from CPU to the 
memory buffer running at 32Gb/s NRZ. S-Parameters for the 
whole channel are first generated, time-domain simulations are 
then performed under various equalization setting combinations 
using an in-house tool to obtain the corresponding HEYE 
opening results. BAL-DO uses this framework to determine next 
equalization settings to be simulated in an automated fashion. At 
each simulation iteration, the GP is trained by using all the data 
obtained in previous iterations. The largest HEYE opening, the 
probability density function (PDF) of HEYE and a sensitivity 



 

 

analysis that ranks the equalization settings in terms of creating 
a variation in HEYE is then derived through the learned GP after 
a certain number of simulations. 

In this work, the optimum eye opening is searched by 
varying the receiver equalizations which includes 4 different 
settings with their varied combinations defining certain 
frequency dependent RX peaking curves. These 4 different 
settings are: long tail equalizer (LTE) gain, LTE zero, and 2 
peaks of CTLE. LTE gain and LTE zero have 8 setting options 
each, and 2 CTLE peaks have 16 setting options each. This 
results in total number of 16384 possible combinations of 
equalization settings for the RX equalization. Each combination 
contains 4 variables, and is defined as a single input vector, to 
be fed into the BAL-DO algorithm and call the in-house 
simulator, HSSCDR, to run the time-domain simulation. The 
main objective is to find the largest HEYE opening and its 
corresponding equalization settings, while the aforementioned 
sensitivity analysis and HEYE PDF are considered as secondary 
objectives. In addition, FFE and DFE are also included as part 
of TX and RX equalization, but their settings are auto-adapted 
in HSSCDR. The data rate in the simulation is set as 32Gb/s and 
the HEYE is found at BER=10-15. 

III. SIMULATION RESULTS 
Since the number of equalization combinations is large, 700 

iterations are used in BAL-DO to ensure convergence, which is 
about 4.3% of total numbers of combinations. One single 
simulation iteration takes approx. 20 min, leading to the whole 
run to be completed in about 10 days. It will be seen later that 
significantly less numbers of iterations can be considered to 
arrive at convergence, which leads to considerably less time. 

Different parameters from channel components such as 
lengths, manufacturing/packaging corners and impedance can 
be picked to form channels with different properties. To 
understand the performance of BAL-DO algorithm for channels 
with different properties, the optimization is performed for two 
channels with high loss and low loss (22.7 dB and 10.4 dB loss 
at 16GHz, respectively) for the same bus topology and results 
are compared. Fig. 1 shows the largest HEYEs derived from 
BAL-DO method for both high and low loss channels as 
simulation counts increase. HEYEs for both channels increase 
at early counts towards the optimal, reaching 33.5%UI at 59th 
simulation and 37.4%UI at 49th simulation for low and high loss 
channels, respectively, which corresponds to less than 1 day of 
CPU time. After that, largest HEYE for low loss channel 
remains unchanged till 700 simulations are done. For high loss 
channel, HEYE increased by 0.2%UI to 37.6%UI at 471st 
simulation, and then no change till finishing all 700 simulations. 
Note that in order to obtain this extra 0.2%UI, the algorithm 
takes approx. 6 extra days, thus the “trade-off” between 

excessive extra simulation time along with resources, and small 
amount of HEYE opening improvement needs to be considered 
and balanced. One may not need to do additional intensive 
simulations to only receive a tiny margin of improvement. It is 
worth noting that the largest HEYE opening for low loss channel 
is smaller than that of high loss channel. Possible reasons for that 
are: (1) increased insertion loss deviation -reflections- for the 
low loss channel and (2) RX peaking circuit design targeting 
high loss channel equalization thus causing over-equalization 
for the low loss channel.  

The converging criteria of BAL-DO is when the maximum 
value of upper confidence boundary (UCB) is within a small 
margin of the largest HEYE found after each iteration. This 
guarantees the optimal value found has 95% confidence level to 
be the global optimum. Convergence curves with respect to 
number of simulations for low and high loss channels are shown 
in Fig. 2(a) and 2(b), respectively. At early iterations, max of 
UCBs are very large, meaning the prediction has large 
uncertainty and goal has not been met yet. As BAL-DO 
progresses to find the largest HEYE opening, two curves get 
closer, and both shows relatively good convergence after 100 
iterations. Note that for the high loss channel, the gap between 
max UCB and Largest HEYE is larger than that of low loss 
channel after converging. This is due to equalization having 
more influence on HEYE opening of high loss channel than low 
loss one. As simulation counts increase, the gap becomes 
smaller, indicating prediction gets more accurate. To further 
verify, intensive simulations were done through HSSCDR and 
confirms that 37.6% UI is the best HEYE for the high loss 
channel. 

  
Fig. 2. Convergence for low (a) and high (b) loss channels  

Values for RX equalization variables rendering optimal 
HEYE opening for different channels obtained from BAL-DO 
are listed in Table I. 

TABLE I.  RX EQUALIZATION VALUES FOR OPTIMAL HEYE OPENING 

 
LTE 
zero 

LTE 
gain Peak 1 Peak 2 Largest 

HEYE  
Simulation 

Needed 
low loss 
channel 2 2 1 1 33.5%UI 59 

high loss 
channel 

8 1 10 14 37.4%UI 49 
3 2 7 5 37.6%UI 471 

The number of variables, and the number of values being 
swept in the pool of each variable, are the two main factors that 
affect the minimum iterations for BAL-DO to arrive at desired 
results though the former has higher impact. In this case, 4 RX 
equalizers are defined as variables, making this a 4-dimensional 
problem. As mentioned above, if the extra 0.2%UI improvement 
can be neglected for the high loss channel, 100 counts (0.6% of 
overall combinations) is enough to derive the largest HEYE with 
good accuracy and low uncertainty. As comparison, a previous 
BAL-DO test with 9 variables required to simulate 4-5% out of 

 
Fig. 1. Largest HEYE opening vs. simulation counts for high 
and low loss channels. 



 

 

the overall combination pool [3]. For brevity, the rest of the 
paper deals with the high loss channel. 

The PDFs of the high loss channel after 100 & 400 
simulations are plotted and compared in Fig. 3. In both cases, 
the uncertainty values (blue histogram) at 37.4%UI are very low, 
and they are very close (0.0027 vs. 0.0022, as shown in the inset 
images), indicating that 400 iterations do not improve the 
accuracy too much as compared to 100 iterations. In addition, 
both PDF curves show that the distributions are left-skewed. 
especially after 400 iterations as in Fig. 3(b), meaning that the 
samples selected by BAL-DO are focused more on the larger 
EYE region, and this is consistent with the goal of finding largest 
HEYE. The uncertainty given as blue shading on the large 
HEYE side is steeper in Fig. 3(b) as compared to Fig. 3(a). This 
is because as the number of iterations increase, more training 
data are available for BAL-DO to improve the overall accuracy, 
especially in the large HEYE region. 

  
Fig. 3. PDF after 100 (a) and 400 (b) iterations. 

BAL-DO algorithm starts with no training data initially, thus 
requires an initial input vector to generate a corresponding 
HEYE opening and form one set of training data. The variable 
combination pool including all combinations is generated by 
BAL-DO and remains unchanged, and the starting input vector 
is randomly selected by the algorithm from it. To understand the 
influence of the initial point selection, three different input 
vectors are manually picked and fed into BAL-DO for the high 
loss channel. Fig. 4 shows the largest HEYE openings with 
respect to simulation iterations by applying 3 different initial 
inputs. Low, mid and high index initial points denote the 10th, 
8010th, and 16010th combinations in the combination array, 
respectively. Their corresponding values are listed in Table II. 

TABLE II.  EQUALIZATION VALUES FOR EACH INITIAL INPUT POINT 

 LTE zero LTE gain Peak 1 Peak 2 
10th point 1 1 1 10 

8010th point 4 8 5 16 
16010th point 8 7 13 9 

As demonstrated in the left inset image in Fig. 4, when 
reaching 37.4%UI, simulation with low index initial point takes 
49 iterations, mid index initial points run takes 59 iterations, and 
the one with high index initial point takes 79 iterations. This 
again indicates that 100 simulations are enough to achieve the 
objective regardless of initial point used. As the simulation count 
increase above 450, as shown in the right inset image of Fig. 4, 
all three runs eventually reach 37.6%UI. Again, the trade-off 
between tiny margin of improvement and excessive simulation 
time needs to be taken into consideration. 

Sensitivity analysis is also performed after different 
simulation counts for the high loss channel. As shown in Fig. 5, 
CTLE peak 1 has the most influence on the HEYE opening as 

simulation counts increase. Meanwhile, as more training data 
becomes available as simulation counts increase, the area 
between UCB and lower confidence boundary (LCB) for each 
variable decrease, indicating the uncertainty over weights 
becomes smaller, hence prediction becomes more confident and 
accurate. Note that in Fig. 5(a), peak 1 has a slightly higher 
weight than peak 2. In this case, more training data are needed 
to distinguish the differences between them, and 150 iterations 
is enough to draw the conclusion instead of going up to 400. 

 
Fig. 4. Largest HEYE opening vs. simulation counts for 
BAL-DO different starting points. 

 

   
Fig. 5. Sensitivity for 100 (a), 150 (b), and 400 (c) 
simulation counts for high loss channel. 

IV. CONCLUSION 
Bayesian Active Learning using Dropout (BAL-DO) is 

extended to successfully perform efficient RX equalization 
optimization for high-speed channel design. Results show that 
for both high and low loss channels, main objective of finding 
largest HEYE openings and their corresponding equalization 
settings can be achieved within 100 simulations with good 
convergence and low uncertainly. With different initial input 
points, results still converge within 100 simulations, which is 
only 0.6% of overall equalization setting combinations. This 
significantly reduces engineering time and resources while 
maintaining high accuracy. The sensitivity analysis shows Peak 
1 is the dominant variable and has higher influence on the HEYE 
opening. BAL-DO technique has great capability of using 
minimum resource to find global optima with high predictive 
accuracy, and it can be extended to different types of 
equalization problems with more variables. 
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