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Abstract—We apply the parallel-in-time method to the transient
simulation of power delivery networks with nonlinear load models.
With adaptive Newton-Raphson iterations, the parallel-in-time
method achieves considerable speedup compared to the general
sequential solver.

Index Terms—PDN transient simulation, nonlinear load model,
parallel-in-time

I. INTRODUCTION

In modern VLSI designs, the power integrity becomes a critical
issue to ensure the reliability and performance of designs. The
challenges of power integrity analysis arise from the tighter noise
margin with reducing power supply voltage, higher resistance on
metal wires due to scaling, and strong coupling noise between
the active devices.

The simulation of power integrity analysis encounters the
problems from the increasing size of power delivery networks
(PDN) as well as the accuracy of load models. Due to the
increasing design complexity, the PDNs could be extremely huge
and stiff, which makes the simulation a critical task. To simplify
the system-level power integrity analysis, the on-chip macrocells
are usually characterized as independent current sources with
linear elements. However, the accuracy of power grid analysis is
lost and the results could be far from the real cases. An efficient
simulation framework is in high demand to handle the issues.

In this paper, we propose a nonlinear macrocell model to
capture the dynamic behavior of PDNs and we take advantage
of the recent progress in the parallel-in-time approach, such
as Parareal (Parallel in Real time) [8] and MGRIT (Multigrid
Reduction in Time) [3], and applied the idea to the PDN transient
simulations. The main contributions of this paper are listed as
follows,

« We adopt a nonlinear voltage-dependent macrocell model in
the PDN simulation framework to characterize the dynamic
behaviors of whole systems.

e We apply the parallel-in-time method to parallelize the
conventional sequential time stepping of the PDN transient
simulation.

o We use the adaptive Newton-Raphson (NR) method to solve
the nonlinear system efficiently in the iterations of step
integrations.

The rest of this paper is organized as follows. In the next
section, we introduce the formulation of the PDN transient
simulations and nonlinear macromodels. In Sec. IV, we propose
the application of the parallel-in-time method to the PDN
transient simulations with adaptive NR iterations. Finally, a group
of PDNs is used to validate our method. The experimental results
are shown in Sec. V.

II. BACKGROUND

Given the circuit netlist and device models,
formulation is shown as follows,

dg(z)
o tf@ =

the general

Bu(t), ()]

978-1-7281-6161-7/20/$31.00 © 2020 IEEE

Current waveform with V;, ; supply voltage
(4
sup = Current waveform with V; supply voltage

© <
'

1(A)

it
V) < Vg < Vjy @ 1(0)
:

T1oaa(t, Vsup )0

Tioad(t Vsup), Gtoad(Vsup)

! Ctnnd(”sup)

(a) Nonlinear load model (Macrocell)

time

(b) An illustration of calculating I;pqa(t, Vsup)

Figure 1: An example of nonlinear load model in PDN.

where € R™*! is the vector of nodal voltages and branch

currents. The charge/flux is represented by ¢ € R"*! and f €
R™*! contains the current/voltage terms. Vector u(t) represents
all the external excitations at time ¢ and B inserts the signals to
the system. If the element constitutive equations are linearized,
we can represent Eq. 1 as the matrix form DAEs,

C(z)z(t) + G(x)x(t) = Bu(z,t), 2)

where matrices C(xz) € R™*™ consists capacitance/inductance
and G(xr) € R™"™ represents the conductance/resistance,
respectively. Vector u(x, t) contains the linear and nonlinear input
sources. The elements are functions of x.

With given initial state x(¢) and assumption that the system
is unchanged in the step from ¢ to ¢ + h, the linear multi-step
integration methods are widely used approximate the solution
in Eq. 2, such as Forward Euler (FE), Backward Euler (BE),
Trapezoidal (TR) and explicit Matrix Exponential [10]. To
guarantee the stability of algorithms [2], [12], we mainly talk
about the BE method in this work.

III. NONLINEAR LOAD MODELS IN PDNs

We propose a nonlinear macrocell load model to include the
effects of Dynamic Voltage Drop (DvD) in PDNs [6], [7], [11].
A voltage dependent current source Iload(t,vsup) with series
RC, Rioad(Vsup) and Cload(Vsup), are used to model the current
fluctuation caused by DvD at the power supply node (i.e., Vgyp),
as shown in Fig. 1. Our nonlinear load model provides the
fixed pivot points information, which enable us to determine the

simulation time points in advance.
The nonlinear load models are generated at different supply

voltages (i.e., V). During the transient simulation, the values of

elements can be interpreted based on ’Usup at t as

(1541 (8) —%5(1))
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where v, lies between two supply voltages [V}, V1] and the
coefficients ¢, g, ¢ represent the element values at each supply
voltage in the macrocell model.



(1) Sequential Method

| T TR NN SR N N N |
(2) MGRIT Method (Two levels)
tun tyn+1 " tunem-1 tun
Fine }— ... ——1 1 I T TR T R ! ;
Ty T, Tusi Tn+2 TN

MS (Tn+1'Tn'xn) MS(Tn+2'Tn+1'xn+1)

Coarse|< - | ...
) ¢
To T, TnMn Ty
My (Tys1,TrsXn)  My(Traz, Trst, Xns1)
Figure 2: In PDN transient simulation, step integrators are applied

to (1) general sequential method and (2) MGRIT method with
two levels.

IV. A PARALLEL-IN-TIME METHOD FOR PDN TRANSIENT
SIMULATION

We propose a parallel-in-time method for nonlinear PDN
transient simulations with the MGRIT method [3] and adaptive
Newton-Raphson techniques, named as MGRIT-AdapNR. Firstly,
we discuss the application of the MGRIT method to circuit
simulation in Sec IV-A. Then we introduce the adaptive NR
method to solve the nonlinear PDNs in Sec I'V-B.

A. MGRIT method with Linear Step integrators

Parareal was first presented as a numerical method to solve
evolution problems [8] and extended to PDEs with many follow
ups. Consider the DAEs in Eq. 2, BE integration starts from

xz(t+ h) = z(t) + ha(t + h), “4)

which gives

C(z)
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where we can define the operator M = (%2 + G(x)) ~' on the
rhs of equation at t. The DAEs can be solved with linear step
integration method with NR iterations.

Fig. 2 demonstrate (1) the general sequential integraton method
and (2) the two level MGRIT method. We assume the fine time
grids have uniform step size h. Each time interval in the coarse
time grid equals H = Mh. Let My (Ty41,Tn,xy,) denote the
long step integration on the coarse time grid from 7}, to T},41,
where T,, = tprp. Let Mg(Ty41, T, x,) denote the short step
integration on the fine grid which takes M steps from T}, to T}, ;.
The MGRIT method performs £ iterations and approximates the
next approximation with the formulation:

xflkfll) = Mp(Tpi1, T, 2FD) + Mo (Tyuia, Ty M)
—Mp(Thi1, T zt®).  (6)

The first long step integration has to be performed sequentially
in order to wait for zF*!. The second and the third term
only depends on results from the previous iteration, where the
integrations between any time interval can be operated in parallel.

The interpretation of Parareal/MGRIT as a time multigrid
method is well illustrated in previous work, detailed proof can be
found in [4]. The iteration in MGRIT is consistent with the fine
grid problem and the algorithm follows the linear convergence
of multigrid methods [2], [4], [5].

B. Nonlinear Systems and Adaptive Newton-Raphson Iterations

For a nonlinear system, the implicit formulation Eq. 2 requires
NR iterations to achieve a converged solution. We define the
residual of the system at ¢ as

r(z) = Bu(x,t) — C(z)z(t) — G(z)x(t). @)
Based on the Taylor expansion around the current approximation
2(®) the next approximation z(*+1) satisfies
0=r(™*) mr(@®) + J(@®) (@D — 208
where J(z) is the Jacobian matrix with J;;(z) = %.
J
practical circuit simulation, the J(z) is given by the nonlinear

elements and choice of multi-step method. The NR iterations
follow the relation

D = (0 g (=L (g (k) )

In

The corresponding Jacobian is updated at each iteration according
to 2(*). Either the residual r(z(*+1)) is below given tolerance or
the change of solution from z(*) to z(*+1) is small enough the
iterations are terminated.

Unlike the traditional method where NR iterations are used
at each step, adaptive NR (adap. NR) method skips the NR
iterations if the change of x at ¢ 4 h satisfies

1Az < Ay, (10)

where Az® = z(0)(t 4+ h) — 2(t) and Ay, is the given threshold.
Considering the nonlinear macrocell model is less sensitive to
its voltage than transistors, we can set larger Ay, to improve the
performance.

V. EXPERIMENTAL RESULTS

The MGRIT-AdapNR is implemented via the open source soft-
ware library Xbraid [1] in C++. All experiments are performed
on a 1.8GHz Intel Xeon 24-CPUs server.

Table I shows the statistics of PDNs with size ranges from
thousands to millions, where the design “genckt30” is created
based on the specifications in [9] and used for optimum parameter
exploration. For ibmpglt-nl, ibmpg2t-nl, and ibmpg3t-nl, we
extend the original power loads to nonlinear load models with the
guidance from industry and use the original PDNs of ibmpglt,
ibmpg2t, and ibmpg3t [9]. The nonlinear load models are updated
using Eq. 3 in the transient simulations. We compare MGRIT-
AdapNR with Sequential solver (Seq) using NR iterations at
each time step. The maximum absolute error e,,,, and average
absolute error e,  are calculated from the probing nodes of each
design and reported in the following experiments. The runtime
represents walltime.

Table I: Design specifications of PDNs

[ PDN [ #R | #C [ #L | #Loads [ #Size | #Probing Nodes |
genckt30 26K | 1.4K 0 720 | 1.6K 90
ibmpglt-nl 54K 11K | 277 11K 40K 24
ibmpg2t-nl || 245K 37K | 330 37K | 165K 20
ibmpg3t-nl 1.6M | 201K | 955 201K M 20

A. Study I: Linear vs Nonlinear Load Model

Fig. 3(a) shows the simulation results of a nodal waveform
from ibmpglt with linear load models and ibmpglt-nl with
nonlinear load models. The simulation time is 3ns with 900
time steps. The maximum IR drop with nonlinear load models is
92% larger, which is underestimated by the linear models. The
nonlinear load model is essential for power integrity analysis.
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Figure 3: (a) Linear vs Nonlinear Macrocell Model; (b) Nodal waveforms of Seq and MGRIT-AdapNR (Table 1V).

B. Study II: Optimum Parameter Exploration

We perform multiple experiments on #Cores, Coarsening
Factor (CF), and Maximum Level (ML) of MGRIT-AdapNR to
find the optimum settings in terms of runtime and accuracy.
#Cores: Table. IT shows the MGRIT-AdapNR runtime with 4, 8,
16, and 24 cores. Compared to the Seq, MGRIT-AdapNR with
24 cores achieves 2x speedup and the max error is 3mV. The
sublinear trend of Speedup is mainly caused by the overhead of
communication for parallel processing. Once the #Cores exceeds
a threshold, the speedup is close to linear [3]. Besides, the
difference in max and avg errors of different #Cores is less than
1%. MGRIT-AdapNR is robust with various #Cores.

Table II: Experimental results of different #Cores using ibmpg1t-nl with
3ns simulation time and 900 time steps.

#Cores |emar (MV)|eqvg (mV)|Runtime (s)|Speedup (X)

Seq 1 - - 4790.61 1
4 3.00] 3.82E-3 6882.63 0.70

8 3.00] 3.83E-3 4250.47 1.13
MGRIT-AdapNR|—¢ 3.00] 3.84E3| 309215 133
24 3.00] 3.84E-3 2493.53 1.92

Coarsening Factor (CF) and Maximum Level (ML): The CF
defines the fine grid and coarse grid ratio at each level and
ML defines the maximum level in multigrid. We use ~genckt30”
with 410K time steps to explore the optimum CF and ML to
fully leverage the parallel-in-time advantage. Table III shows the
results of Seq and MGRIT-AdapNR with various combinations of
CF and ML. We select CF=2, 6, and 10. Then, we increase the
ML from 2 to 10 with increment 2 until the time grids cannot be
coarsened any more. From the results, CF=10 and ML=4 achieves
the best performance. The max error is less than ImV.

Table III: Experimental results of Seq and MGRIT-AdapNR (24 cores),
with multiple combinations of CF and ML using genckt30 test case.

Simulation time=6ns. #time steps=410K. Time Grid Ratio=(#Finest
Time Grids)/(#Coarsest Time Grids).

. . . |€maxz| €avg |Runtime|Speedup
CF|ML | Time Grid Ratio mVv) | mv) () X)
Seq - - 1 - -1 1289.07 1
2 2| 0.01[4.11E-4] 1967.61 0.66
4 8 0.06[5.86E-3] 1011.81 1.27
26 32| 0.I6[1.02E-2] 793.43 1.62
8 128 0.22]1.02E-2| 730.05 1.77
10 512 0.22]1.04E-2| 710.14 1.82
MGRIT-AdapNR 2 6 0.04[5.75E-3 938.4 1.37
6 4 216] 0.36|5.84E-3| 445.83 2.89
6 1296 T1.10[2.91E-2| 426.2 3.02
2 10| 0.07[7.70E-3| 730.18 1.77
10 4 1000 0.14[1.I0E-2| 390.74 3.30
6 100000 5.60[2.86E-1| 387.27 3.33

C. Main Results
Table IV shows our main results on PDNs in Table I. The
simulation time of ibmpglt-nl, ibmpg2t-nl, and ibmpg3t-nl are

3ns, 3ns, and 2ns with 900, 960, and 630 time steps, respectively.
The MGRIT-AdapNR multigrid cycles of all three cases are 3.

The MGRIT-AdapNR multigrid cycles and Adap. NR reduce the
#Newtonlters up to 30%. Compared to Seq, MGRIT-AdapNR
achieves more than 2x speedup with less than 5mV max
error. The MGRIT-AdapNR successfully captures the transient
waveform of nonlinear PDNs, as shown in Fig. 3(b).

Table I'V: Experimental results of Seq and MGRIT-AdapNR (#Core=24,

CF=10 and ML=4). dy,q, is the absolute error of the max voltage
fluctuation of the probing nodes.

dmaz |€mac| €avg | #Newtonlters Runtime (s) Speedup

(mV) |(mV)| (mV) [ Seq [Proposed Seq Proposed| (X)
ibmpgIt-nl[5.00E-2| 3.00]3.84E-3]1982 1521] 4790.61] 2493.53 1.92
ibmpg2t-nl|8.00E-2| 3.40|8.24E-2(2304 1662| 17882.07| 7947.37 2.25
ibmpg3t-nl|1.00E-2| 2.54[3.12E-2]1824 1256[102683.35[43430.18 2.36

VI. CONCLUSION

We develop the MGRIT-AdapNR for the transient analysis of
PDNs with nonlinear load models, where the time integration
is parallelized. Compared to the Seq, MGRIT-AdapNR achieves
3x speedup on long simulation time (410K time steps) and
2x speedup on the PDNs from 40K to 1M size. Without the
limitation of maximum #Cores on our server, we expect that
MGRIT-AdapNR can achieve more speedups. The future research
directions include (i) exploring the performance improvement
of MGRIT-AdapNR with more cores and (ii) improving the
convergence rate using advance integrators such as Matrix
Exponential [10].
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