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Abstract—The aim of this contribution is to study the effect of
roughness on the propagation constant in interconnect structures.
For this purpose, a stochastic framework is constructed around
a full-wave electromagnetic field solver. To reduce the number of
repeated calls to the full-wave simulator, two sparse stochastic
techniques have been implemented and tested. A balance between
calculation time and accuracy is sought for and found, which is
demonstrated for a rough rectangular waveguide.

Index Terms—Interconnect structures, line edge roughness,
stochastic testing, sparse polynomial chaos

I. INTRODUCTION

The need for smaller and faster electronics imposes serious
challenges to their design, as previously negligible phenomena
now influence their performance. One such example is line
edge roughness (LER) [1], where the edges of electronic
structures have a random, rough profile. This can be induced
on purpose for improved adhesion or unintentionally by the
nature of the production process. No matter its origin, the
ever-increasing skin effect, pushing the current towards the
edges of a conductor, only reinforces the influence of the LER,
necessitating a rigorous study. A full-wave approach imposes
itself to capture all emerging phenomena, entailing computa-
tional challenges. Full-wave electromagnetic simulations tend
to be very time-consuming, while stochastic methods typically
demand repeated runs of the electromagnetic field solver.

In this contribution, we investigate two stochastic methods
to model the influence of roughness on the propagation
constant of a waveguide. To keep the computational burden
as small as possible, whilst still accurately capturing the
relevant features, the two stochastics methods are sparse. More
specifically, a novel sparse grid version of the well-known
Stochastic Testing (ST), originally proposed by Zheng Zhang
et al. in 2013 [2], is constructed and the sparse Polynomial
Chaos (SPC) method, proposed by Blatman and Sudret in
2009 [3], is adapted to our waveguide problem. Both stochastic
approaches require (a few) calls to a full-wave simulator,
which in this contribution is a finite-element method (FEM)
based solver. The obtained stochastic framework is applied
to the variability analysis of the TE10 mode’s propagation
constant of a rectangular waveguide. The validation of the
methods is provided by means of comparison with a brute-
force Monte Carlo (MC) analysis.

II. DETERMINISTIC PROBLEM AND FULL-WAVE SOLVER

We start from Maxwell’s curl equations and assume, based
on the longitudinal invariance encountered in waveguides (e.g.,
Fig. 1), a z-dependency of e−jβz for the electromagnetic
fields, where the z-axis is the direction of invariance and
β the propagation constant of the mode. A finite-element
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Fig. 1. An air-filled rectangular waveguide with perfectly conducting edges
and dimensions a and b.

method (FEM) is employed to solve Maxwell’s equations
numerically. Approximating the electric field in the domain Ω
by an appropriate set of hierarchical vector basis functions and
applying a Galerkin weighting procedure eventually yields a
quadratic eigenvalue problem[

¯̄Mβ2 + ¯̄Cβ + ¯̄K
]
v̄ = 0. (1)

The expressions for the matrices ¯̄M , ¯̄C, and ¯̄K are not detailed,
as they are readily derived from the standard FEM procedure.
Solving (1) yields the propagation constants β for the given
geometry (and also the corresponding eigenvector v̄).

III. RANDOM PROBLEM AND SPARSE TECHNIQUES

A. Roughness and Karhunen-Loève transform (KLT)

hi

Fig. 2. Generation of a rough edge (red) by shifting k points along the
nominal edge (black) over a random distance hi (i = 1, . . . , k) (green) along
the outward pointing normal to that edge.978-1-7281-6161-7/20/$31.00 ©2020 IEEE



As shown in Fig. 2, we model the rough edge by a
multivariate Gaussian distribution, similar as in [4]:

P (h̄) =
1√

| (2π)k ¯̄Σ |
exp(−1

2
h̄T ¯̄Σ−1h̄). (2)

The h̄-vector collects the deviations of k points on the
edge ∂Ω, measured along the outward pointing normal to
the edge. ¯̄Σ is the correlation matrix, for which a Gaussian
relationship on the distance between two points, measured
along the edge, is chosen:

¯̄Σij = σ2
r exp

(
−|| ~ri − ~rj ||

2
∂Ω

L2
c

)
. (3)

The parameter σr determines by how much points on the
edge can deviate from their nominal position, while the
correlation length, Lc, is a measure for how much the heights
of neighbouring nodes depend on each other. The Karhunen-
Loève transform (KLT) approximates the distribution of h̄ by

h̄(ξ̄) ≈ ¯̄V ¯̄Λ
1/2
NRV

ξ̄, (4)

where ξ̄ contains a set of NRV stochastically independent
standard normal random variables (RVs). ¯̄ΛNRV has on its
diagonal the first NRV eigenvalues, λn, of ¯̄Σ, in descending
order. The columns of ¯̄V are the corresponding eigenvectors.
A measure for the fraction of variability that is captured by
this approximation is given by:

Θ =

∑NRV
n=1 λn∑k
n=1 λn

. (5)

B. Polynomial chaos expansion (PCE)

A relationship between the rough edge and a set of RVs
has been established by the KLT. The distribution of the
propagation constant β will be provided through a spectral
decomposition into a set of P + 1 orthonormal polynomials,
φi(ξ̄), given by:

β(ξ̄) ≈
P∑
i=0

aiφi(ξ̄). (6)

The focus now shifts towards determining the expansion coef-
ficients ai (i = 0, . . . , P ) in this polynomial chaos expansion
(PCE). These can be found in several ways.

C. Sparse grid Stochastic Testing (ST) method

A popular technique, able to deal with a large number of
RVs, is stochastic testing (ST) [2]. Within ST, (6) is tested for
a certain number of ‘interesting’ values of ξ̄i ∈

{
ξ̄i
}

test:

β(ξ̄j) =

P∑
i=0

aiφi(ξ̄j) ∀j ∈ {0, ..., P}

⇒ β̄ = ¯̄Φ · ā,

(7)

where the number of testing nodes is equal to the number
of basis functions. Calculating the expansion coefficients is
now equivalent to solving a matrix equation. The selection

of ‘interesting’ testing nodes results from a node picking
algorithm [2]. In this algorithm, first a tensor grid of nodes
is constructed, based on quadrature rules. Then, nodes with
a higher weight are favored and selected, in the meantime
guaranteeing the well-conditionedness of (7).

When applying this approach to the analysis of roughness in
waveguides, the standard ST procedure still entails too many
realizations β(ξ̄j), and thus calls to the full-wave FEM solver.
The exponential growth in the number of function evalua-
tions is due to the tensor product of univariate quadratures
to integrate a multivariate function. Whereas in integration
routines such a procedure is said to be second-order accurate,
albeit component-wise, it turns out, however, that nodes can
be omitted without sacrificing on accuracy. Removing these
redundant nodes from the tensor grid, is the crux of so-called
sparse grid techniques [5].

In this contribution, we apply a novel sparse grid ST algo-
rithm, which is conceptually quite simple, yet effective. The
procedure is similar to the one proposed by Gossye et al. [6]
to analyze statistically spatially varying dielectric-property
profiles. Starting from a sparse grid, we apply the rules of
the standard ST algorithm to pick the interesting nodes, i.e.,
favoring nodes with a higher weight and guaranteeing that the
matrix (7) remains well-conditioned. This reduces the number
of calls to the FEM solver drastically, whilst maintaining
accuracy, as demonstrated in Section IV.

D. Sparse Polynomial Chaos (SPC)

It can be shown that the standard ST and the sparse grid
ST techniques boil down to the observation that not all basis
functions φi(ξ̄) in the polynomial chaos expansion (PCE) (6)
are equally relevant. Therefore, we will also compare our
sparse grid ST technique with another sparse technique, i.e.,
sparse polynomial chaos (SPC). SPC is explored as a possible
technique to exploit the aforementioned observation to the
fullest. The SPC algorithm further reduces the required number
of full-wave runs, while extracting the most important terms
in the expansion. Several algorithms, attempting to construct
a sparse polynomial chaos expansion, exist in literature. In
this contribution, the algorithm described by Blatman and
Sudret [3] is adapted to our needs. The basic idea is to
perform a fixed number of runs once and for all. Afterwards,
an adaptive sparse set of basis functions is selected to construct
a PCE. The decision whether or not to add or remove a basis
function to this sparse set, is based on solving subsequent
overdetermined systems. After several iterations of adding and
removing basis functions to a temporary set of basis functions,
a sparse set of relevant basis functions is retained.

IV. APPLICATION TO A ROUGH RECTANGULAR WAVEGUIDE

We now apply the two sparse stochastic techniques to the
rectangular waveguide of Fig. 1, where we focus on the
variability of the TE10 lowest-order propagation constant,
further denoted β. As values for a and b, we choose 2l
and 1l, respectively, with l an arbitrary length unit. The free-
space wavenumber is given by k0 = 10l−1, leading to a dis-



cretization of Ω into 1094 triangles. A second-order expansion
leads to a finite-element linear system in 5745 unknowns. The
roughness profile is generated by varying k = 82 uniformly
spaced nodes along the edge ∂Ω. Additionally, the following
constants were assigned for the KLT: Lc = 0.5l, σr = 0.01l,
and Θ = 0.85, yielding NRV = 8 RVs collected in the vector ξ̄.

We compare the results of the two sparse algorithms to a
standard Monte Carlo (MC) approach. MC is here consid-
ered as the golden standard, given its guaranteed albeit slow
1/
√
NMC-convergence, with NMC the number of samples

drawn. For the particular example, it is observed that for
NMC = 50000, the average of the propagation constant β has
converged up to a relative error of 6 · 10−6 and its standard
deviation up to a relative error of 2 · 10−2. Specifically, the
following values are obtained: µβ =

(
9.87589± 6 · 10−5

)
l−1

and σβ =
(
0.00192± 4 · 10−5

)
l−1.

Employing the novel advocated sparse grid ST technique,
combined with a PCE, demands only 45 runs of the full-
wave solver. This is a speed-up by a factor of more than
1000 compared to the brute force MC method. Note that
the time needed for node picking is negligible compared
to one full-wave simulation. The sparse grid ST predicts
µβ = 9.87590 l−1 and σβ = 0.00196 l−1. Hence, both values
are within the bounds determined by the MC simulation.
Furthermore, Fig. 3 compares the distribution of β obtained
by the MC method and sparse grid ST. To construct the
distribution by means of sparse grid ST, we sample our surro-
gate model (6) through a MC simulation, which only requires
simple arithmetic. Thus, constructing such a distribution is also
expedited tremendously. To quantify the good correspondence,
we also performed a Cramèr-von Mises (CvM) test [7], which
delivers a p-value of 0.18. This value shows that both datasets
indeed originate from the same distribution.

We also apply the aforementioned SPC algorithm to the
rough rectangular waveguide. For this simulation, the number
of full-wave calculations could be further reduced from 45
to 30, cutting off a third from the calculation time. The
computational cost of the iterative procedure to select the
pertinent basis functions for the PCE is negligible compared
to one full-wave run. SPC predicts µβ = 9.87589 l−1 and
σβ = 0.00196 l−1, which is again within the bounds set by the
MC simulation. These results are also summarized in Table I.
Moreover, the obtained distribution for β is added to the plot
in Fig. 3. This distribution predicted by SPC is again plotted
by employing the corresponding PCE as a surrogate model. A
good qualitative resemblance is clearly visible and a CvM test
was carried out as well, resulting in a p-value of 0.1241. It is
therefore safe to assume that both the MC and SPC simulation
also originate from the same distribution.

V. CONCLUSIONS

The goal of this contribution was to evaluate the influence
of roughness on the propagation characteristics of interconnect
structures. Given the computational burden of a single full-
wave simulation, two sparse stochastic methods were imple-
mented, in conjunction with a finite-elements full-wave solver.

µβ [l−1] σβ [l−1]
MC 9.87589± 6 · 10−5 0.00192± 4 · 10−5

ST 9.87590 0.00196
SPCE 9.87589 0.00196

TABLE I
STATISTICS OF THE TE10 PROPAGATION CONSTANT β , OBTAINED BY MC

SIMULATION, SPARSE GRID ST AND SPC.
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Fig. 3. Comparison of the distribution of the TE10 propagation constant β
of a rectangular waveguide, obtained by MC, sparse grid ST and SPC.

The methods were applied to the computation of the TE10

propagation constant of a rectangular waveguide. It was shown
that the methods reduce the computational burden, whilst still
accurately predicting the influence of the roughness profile.

In future research, both sparse techniques will be further ex-
plored and improved, pushing the number of RVs to the limit.
Other roughness profiles and waveguide structures, including,
e.g., lossy microstrip interconnects, will be investigated too.
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