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Abstract—Jitter, a timing deviation from the ideal edge po-
sition, is an unwanted phenomenon in high-speed link systems.
Decomposing jitter into its components and identifying each type
of jitter are beneficial to diagnose the root causes of jitter, thereof
improving the system design. In recent years, variational bayes
inference (VBI) has made substantial progress towards improving
the efficiency of statistical modeling. This paper proposes a jitter
approximation method using VBI. Applications approximating
different mixtures of well-known components of jitter show good
results. The approximated distribution is much closer to the true
jitter distributions as compared to traditional methods.

Index Terms—jitter decomposition, high-speed link system,
Gaussian mixture model, stochastic variontional inference

I. INTRODUCTION

Over the past decades, signal analysis has been aggressively
pursued in order to meet urgent demands for multi-gigabit data
rate transfer. As data rates keep increasing, jitter, defined as the
deviation of timing edges from their ideal positions, becomes
a crucial element affecting the performance of overall high-
speed link systems. In the high-speed link system, a small
timing deviation might be a significant portion of the signal
interval because of the fast transition and short unit interval.
Then the jitter-induced errors corrupt the signals and even the
clock, causing failure of the proper signal transmission. As
a consequence, tighter control over jitter for high-speed link
systems is needed to prevent signal failure or non-ideality,
and understanding amount of jitter generated by different jitter
sources is vital for high-speed link system designer to meet
the requirements.

Generally, an observed total jitter can be classified into two
categories: deterministic jitter (DJ) and random jitter (RJ).
Deterministic jitter follows the bounded distribution and is
normally separated into various components to investigate
different root causes. It is further divided into periodic jitter
(PJ), data-dependent jitter (DDJ) and bounded uncorrelated
jitter (BUJ). PJ repeats in a sinusoidal fashion and external de-
terministic noise sources such as switching power supply noise
can lead to PJ. DDJ is the data pattern related to jitter. The
rest of the bounded jitter goes into the BUJ category. Random
jitter is unpredictable jitter and is caused by unbounded jitter
sources. Random jitter normally has a Gaussian distribution
model because the sources of random jitter are thermal noise,
1/f flicker noise or shot noise, which fit to a bell curve.

In order to separate jitter into its components, various
methods have been developed. The tail-fitting algorithm is one

of the prominent jitter separation method [1]. Two Gaussian
distribution curves are found to fit the tails of total jitter
probability distribution. Then, the quantity of RJ and DJ can
be determined through tail-fitting. However, the drawback is
that a large amount of jitter samples is required to identify
the fit tail part of the distribution. In [2] and [3], a better
jitter decomposition method based on Gaussian mixture model
(GMM) was promoted. For comparison, in this preliminary
work on jitter extraction using stochastic variation inference
(SVI) framework, we aslo implemented a GMM model but
reformulated the maxmimum likelihood problem into a SVI
problem. Convergence rate is about the same between the two
methods but accuracy is improved by using SVI. In addition,
rather than restricting to a limited class of models that allows
an analytical solution, SVI provides a general tool to define
any statistical model,regardless of the complexity.

In the next section, the Dual-Dirac model of jitter is
reviewed at first. Section III presents the GMM and variational
GMM algorithm to segregate the total jitter. Examples of
decomposing a mixture of RJ and DJ jitters with different
type of DJ are presented in Section IV. Section V concludes
the paper.

II. DUAL-DIRAC MODEL OF JITTER

As mentioned in Section I, jitter can be mainly classified
into RJ and DJ, Dual-Dirac model [4] assumes that the total
jitter can be explained by 2 components whose probability
density functions (pdf) are

p (DJ) = 0.5δ (t− µL) + 0.5δ (t− µR)
p (RJ) = N

(
0, σ2

) (1)

Fig. 1. Dual-Dirac model.

Illustration of total jitter distribution is shown in Figure 1.
Fitting jitter data to dual-dirac model means finding σ, µL

and µR to maximize the likelihood observing the data. In
most cases, PJ, an example of whose distribution is shown
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in Figure 2, can also be approximated by 2 Dirac functions as
well.

Fig. 2. Periodic jitter.

An advantage of the dual-dirac model is that it is simple
and analytical. However, the trade-off is that the accuracy is
low and jitter decomposed by the dual-dirac model can only
be separated into either DJ or RJ, which is not very useful for
debugging the circuit of interest.

III. STATISTICAL MODELING OF JITTER WITH GMM

Due to the oversimplicity of dual-dirac model, many at-
tempts to improve jitter approximation have been proposed in
the literature. Among those, standing out is the work in [2],
a GMM is used to approximate the total jitter distribution. It
is useful because GMM is a powerful and flexible model that
can accurately approximate a smooth pdf.

Consider a statistical model with the latent variable z,
observed variable x, let θ denote the set of parameters. The
log-likelihood of observing a set of data X is

log p (X|θ) =

∫
log p (X| z,θ) p (z|θ) dz (2)

Statistical inference involves finding the maximum likeli-
hood (ML) solution, θML, that maximizes the (log-)likelihood
in (2). The expectation maximization (EM) algorithm is an
iterative algorithm converging the θ to the ML solution and is
especially useful when no closed-form solution is available.

A GMM of n clusters is formulated using a latent variable
z representing the Gaussian cluster from which a sample
x comes from. Thus, z is sampled from a categorial, or
multinomial, distribution with the mass probability π =
[π1, π2, . . . , πn]

T such that πi ≥ 0,
∑n

i=1 πi = 1 , i.e.
p (z = k) = πk.

z,θ ∼ Categorial (π)

x| z, θ ∼
∑K

k=1 πkN (µk,Σk)
(3)

In this case, θ are the set of unknown parameters such as
π1, µ1,Σ1, etc. Given a set of data {xi} , i = 1, 2, ..., N , the
model log-likelihood is

log p (X|θ) =

N∑
i=1

log

[
K∑

k=1

πip (xi| zk)

]
(4)

The update formulas for kth Gaussian component at itera-
tion j are given by [5]:

〈
z

(j)
k,i

〉
=

πkN
(
xi|µ(j)

k ,Σ
(j)
k

)
M∑

m=1

πmN
(
xi|µ(j)

m ,Σ(j)
m

) (5a)

π
(j+1)
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1

N
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〉
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(5d)

In variational inference view, let q (h,φ) be the probability
distribution on some hidden variables h ∈ Rd with some
parameters φ, for simplicity, the φ-dependency is implicitly
acknowledged, φ will be dropped from the notation. Since∫
q (z) dz = 1, the log-likelihood can be re-written as [6]

log p (x|θ) = L (q,θ) +KL
(
q ‖ ph|x

)
(6)

with

L (q, θ) =

∫
q (h) log

(
p (x,h| θ)
q (h)

)
dh (6a)

and

KL
(
q ‖ ph|x

)
= −

∫
q (h) log

(
p (h|x, θ)
q (h)

)
dh (6b)

The term KL (q ‖ p) ≥ 0, ∀p, q is known as the Kullback-
Leibler divergence which measures how much q differs from
p. Hence, (6) becomes

log p (x|θ) ≥ L (q,θ) (7)

L (q,θ) is called the evidence lower bound (ELBO). As
can be seen from (7), the ELBO provides a lower bound
to the likelihood, which makes maximizing it is as good as
maximizing the likelihood. The gap (difference) between the
log-likelihood and the ELBO is exactly the KL divergence,
if KL (q ‖ p) = 0, the ELBO hits the log-likelihood, q is
identical to ph|x. Variational inference focuses on choosing
a suitable variational distribution, i.e. the form of q, that best
approximates the true distribution p (h|x, θ) by optimizing
the ELBO through coordinate ascent [7].

One main focus of variational inference approach is to
choose the form of q. In this work, we use a mean-field
approximation [5] to q (h), i.e. the variational variables are



factorizable, each variational distribution qi is choosen from
the exponential family

q (h) =

d∏
t=1

qi (hi) (8)

The ELBO can be written as [7]

L (q,θ) ∼
d∑

t=1

Eq [log p (ht|ht̄, X)]− Eqt [log qt (ht)] (9)

where the subscript t̄ means all indices other than t. Setting
the derivative of L (q, θ) to 0, we arrive at coordinate ascent
update

q∗ (ht) ∼ Eqt̄ [log p (ht|ht̄, X)] (10)

Once a conjugate prior is put over the parameters, the update
rule in (10) is tractable and analytical.

IV. EXAMPLES

In order to test the validity of our method, two types of
total jitter construction are performed: one consists of PJ and
RJ, and another has DDJ and RJ. Since the pdf of a typical,
single frequency PJ has highest density at its bounds, it is
reasonable to approximate the pdf of PJ as dual-dirac. As
shown in Table I, there is a total of 7 jitter combinations based
on the selection of RJ and PJ/DDJ. The term PJ/DDJ in Table
1 is used to describe |µL - µR| while the term RJ tells the size
of σ. The amount of 10,000 total jitter samples are collected
for extraction. The jitter estimated value and jitter error are
recorded.

TABLE I
JITTER STUDY CASES

Cases Jitter Added (ps)
Case 1 RJ = 10, PJ = 5
Case 2 RJ = 15, PJ = 5
Case 3 RJ = 5, PJ/DDJ = 5
Case 4 RJ = 10, PJ/DDJ = 10
Case 5 RJ = 15, PJ/DDJ = 15
Case 6 RJ = 5, DDJ = 10
Case 7 RJ = 5, DDJ = 15

Comparing the DJ error in Figure 3, SVI shows less error
in both PJ and DDJ cases than EM. As expected, in cases
that have PJ, when approximating the PJ as dual-delta, DJ
estimation error is larger than that in cases that have DDJ. It
is worth noting that this approximation gets worse (over 100%
error) when RJ is the dominant contributor in the underlying
jitter. The reason could be the distinction between the dual-RJ
in total jitter (TJ) is ambiguous but SVI is still advanced by
the half error rate of EM method.

In Figure 4, SVI method performs significantly better than
the EM method when estimating RJ.

Fig. 3. DJ error between true and extracted values

Fig. 4. RJ error between true and extracted values

V. CONCLUSION

An efficient and accurate jitter decomposition method that
separates periodic jitter or data-dependent jitter and random
jitter is presented. This method is based on stochastic vari-
ational inference of Gaussian mixture model to update and
estimate jitter parameters. The comparison between this novel
method and traditional GMM demonstrates the accuracy of
the proposed jitter separation method. In future work, we
will demonstrate the robustness of SVI in compiling more
complicated graphical models to extract more complicated
jitter mixtures.
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