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Abstract—A novel parallel solver based on the adaptive inte-
gral method (AIM) is proposed for the electromagnetic analysis
of electrical interconnects in layered media. We show that graph
partitioning techniques can be used to optimally distribute, across
thousands of processes, the computations related to both matrix
filling and system solution. The proposed workload distribution
strategy is compared to existing techniques through a scalability
study on a large realistic interposer model in layered media.

Index Terms—surface integral equation method, adaptive in-
tegral method, parallel algorithms, skin effect modeling

I. INTRODUCTION

Compared to volumetric formulations, surface integral equa-
tion (SIE) methods offer an efficient approach for the electro-
magnetic analysis of interconnects in layered media [1]–[8].
Although efficient, SIE methods are always partnered with
a suitable acceleration scheme to increase their scalability.
In layered media, the most popular choice is the adaptive
integral method (AIM), which accelerates matrix-vector prod-
ucts through fast Fourier transforms (FFTs) [3], [9]. Even
with acceleration, existing electromagnetic solvers can hardly
handle realistic portions of the intricate interconnect network
present in typical integrated circuits, especially those featuring
3D integration. This scenario calls for the development of ef-
ficient parallel solvers suitable for large-scale electromagnetic
analyses.

To efficiently parallelize an electromagnetic solver one
must: i) distribute the workload evenly across processors, and
ii) minimize communication between them. In [6], [7], a 3D
block decomposition is proposed to efficiently distribute AIM
computations. This approach works well for integral equation
methods using volumetric meshes, since mesh elements cover
the simulation domain in a fairly uniform fashion. However,
parallelization efficiency tends to be suboptimal for sparsely-
populated problems or for “hollow” meshes, such as those that
naturally arise with SIE formulations [10].

In this work, we propose an efficient parallelization strategy
for SIE formulations involving layered media, generalizing
our previous work in free space [11]. The new method lever-
ages graph partitioning to distribute AIM operations among
thousands of computing cores in a balanced fashion that
minimizes inter-node communication. A numerical test on a
realistic interposer structure, performed with up to 1,600 cores,
demonstrates better performance than previously-published
solutions.

II. FORMULATION

We consider a structure made by lossy conductors and
embedded in a medium stratified along the z axis. The goal
is to solve Maxwell equations in order to determine the
scattering (S) parameters between some given ports. To model
the induced electric current density in conducting objects, we
use the augmented electric field integral equation (AEFIE)
[5] along with an approximate surface impedance boundary
condition (SIBC) [12]. After discretization with Rao-Wilton-
Glisson (RWG) [13] and pulse basis functions, the AEFIE can
be written as:[
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In (1), ZA and ZΦ are the discretized vector and scalar
potential parts of the single-layer potential operator [14],
which involve the Green’s function of a layered medium [1].
The SIBC is enforced by Zs, while C provides coupling
to a Thevenin-equivalent circuit excitation [2], and Is is the
excitation current. The remaining matrices are identical to [5].

In the AIM, (1) is solved iteratively, and the required matrix-
vector products involving ZA and ZΦ are accelerated with
FFTs. Both ZA and ZΦ are expressed as

Z ≈ ZNR +WHP, (2)

where ZNR models electromagnetic interactions at a short
distance, in the so-called near region. Far-region interactions
are described by the second term, where P projects sources
onto a regular grid (the AIM grid), H computes the resulting
potentials via FFTs, which are finally interpolated by matrix
W onto the original mesh elements [3].

The efficient parallelization of matrix-vector products in-
volving (2) is difficult, because two different workload decom-
position strategies would ideally be required to: 1) distribute
the multiplication by ZNR, whose entries are related to the
original mesh, and 2) distribute the multiplications and FFTs
arising from the WHP term, which instead involve the
AIM grid. Furthermore, undesirable communication will occur
in matrix-vector products involving W and P if a mesh
element and the corresponding AIM grid points are assigned
to different processes.

Existing strategies to parallelize AIM-based solvers focus
on the efficiency of computations related to the AIM grid,
like FFTs, which are typically quite expensive [6], [7], [10].978-1-7281-6161-7/20/$31.00 © 2020 IEEE



However, for complex multiscale layouts, near-region compu-
tations may also be very costly, and need to be carefully bal-
anced across computing nodes to achieve high parallelization
efficiency.

III. PROPOSED METHOD

We present a new parallelization strategy for AIM-based
solvers which efficiently distributes both near-region and far-
region computations across thousands of computing cores,
while minimizing the communication required by projection
and interpolation steps.

A. 2D Fast Fourier Transforms
In layered media, multiplications by matrix H in [3] are

computed through many 2D FFTs. We parallelize these oper-
ations with the pencil decomposition method proposed in [7].
The pencils in [7] decompose the AIM grid into long thin
cuboids aligned with the x axis. In this starting configuration,
each process computes 1D FFTs along the x axis. Then the
result is transposed in a communication step, so that the
pencils become aligned to the y axis. Finally, each process
computes the remaining 1D FFTs along the y axis.

B. Near-Region Operations
Near-region operations include the computation of the

ZA,NR and ZΦ,NR matrices, and the corresponding matrix-
vector products. In layered media, the construction of these
matrices becomes even more time consuming due to the
complexity of the multilayer Green’s function.

In [7], a 3D block decomposition method is proposed to
distribute near-region computations across processes. In this
method, the simulation domain is first partitioned along the x
axis into Px equally sized slabs. Then, each slab is split along
the y axis into Py equally sized pencils. Finally each pencil
is split along the z axis into Pz equally sized blocks. The
computations associated to each block will be later assigned
to P = Px × Py × Pz processes. Prior to assignment, the
workload is balanced with the following procedure [10]:

1) The slab boundaries are shifted one at a time, by
small increments, to balance the number of near-region
interactions associated to each slab;

2) Then, in each slab, the pencil boundaries are shifted to
balance the number of near-region interactions associ-
ated to each pencil;

3) Finally, in each pencil the block boundaries are shifted
to balance the number of near-region interactions asso-
ciated to each block.

This method is simple and effective for many cases. How-
ever, as will be shown in Section IV, this method may not
optimally balance the workload and communication associ-
ated with near-region operations for complex and multiscale
layouts.

We propose a more efficient solution by generalizing, to
structures in layered media, the graph-based approach advo-
cated in [11] for problems in free space. In the proposed ap-
proach, near-region computations are distributed in an optimal
fashion with the following steps:

Figure 1. Geometry of the interposer-level interconnect considered in Sec. IV
with current density computed at 50 GHz when port 1 is excited.

1) A dual graph of the mesh is constructed, where each
triangle is associated with a graph node and graph edges
connect adjacent triangles;

2) The number of triangles falling in the near region of
a given triangle are assigned as a nodal weight to the
corresponding node in the graph;

3) Finally, parMETIS [15], a distributed graph partitioning
library, is used to partition the graph into P sub-
graphs, where P is the desired number of processes.
The partition is generated to approximately satisfy two
optimality criteria. First, the sum of the nodal weights
in each partition should be approximately the same. In
this way, the operations required to pre-compute ZA,NR

and ZΦ,NR and multiply them against a given vector are
evenly distributed among processes. Second, the number
of edges cut by the partitioning process is minimized,
to minimize inter-process communication.

C. Interpolation and Projection

After the AIM grid pencils have been assigned to processes,
there is still freedom for each process to choose one of
the mesh partitions generated in Section III-B. To minimize
communication in the matrix-vector products involving W
and P, there should be maximal overlap between the mesh
partition and the AIM grid pencil assigned to each process.
This goal is achieved by the following algorithm:

1) Each process analyzes all mesh partitions and calculates
N

(p)
E , the number of edges of mesh partition p that are

within its AIM pencil;
2) Each process ranks all partitions in order of decreasing

N
(p)
E ;

3) Finally, starting form the process with lowest rank, each
process chooses the partition with highest N (p)

E among
those still available.

IV. RESULTS

The scalability of the proposed method was tested by
extracting the S parameters of a complex interconnect network
from an interposer used for 3D integration (courtesy of Dr.



Figure 2. Scalability of the proposed solver and the “3D block” method in [10] for different steps of the solver. Dashed lines represent ideal efficiencies of
parallelization and their relative spacing indicates a 2× speedup.

Rubaiyat Islam, AMD). The interposer structure is illustrated
in Fig. 1 together with the location of 2 of the 6 ports
considered in this test. There are a total of 80 copper wires and
one ground plane. The structure is embedded in a two-layer
medium bounded above and below by air. The upper layer has
εr1 = 4, σ1 = 0 S/m, and thickness of h1 = 27.5 µm. The
lower layer has εr2 = 11.9, σ2 = 10 S/m, and thickness
of h2 = 47.5 µm. The resulting mesh of the structure
contained 357,000 triangles and 535,500 edges. The AIM grid
dimensions were chosen to be 90× 400× 8 (Nx ×Ny ×Nz)
and the near-region radius was set to 5 grid points.

The proposed method was compared to the 3D block
decomposition of [10]. All simulations were run on the Scinet
Niagara cluster where each node has 40 Intel Skylake cores
running at 2.4 GHz and 202 GB of memory. In this scalability
study, the number of processes, P , was varied from 20 to
1,600. The wall time required to precompute the matrices
in (1) and solve the system for one frequency point are
plotted in Fig. 2. For all P values, the CPU time required
by the proposed method to determine an optimal workload
distribution is negligible compared to the total simulation time
(less than 2%).

The results show that, when the proposed method is
adopted, a significant speedup can be realized for both the
matrix construction step and the system solution step. For
the matrix construction step, when P = 1600, the proposed
method was 4× faster than the 3D block decomposition
method.

V. CONCLUSION

We presented a new strategy to efficiently parallelize large-
scale electromagnetic simulations based on surface integral
equations. A novel approach based on graph partitioning is
shown to effectively distribute, across thousands of computing
cores, the computation of electromagnetic interactions in both
the near and the far range. When compared to other state-
of-the-art strategies on a complex interconnect network from
a 3D integrated circuit, the proposed method showed better
scalability.
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