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Abstract—PCB transmission lines are designed with broadband 

impedance matching using differential evolution while including 

causal dispersion and roughness. Results for striplines show that 

an optimized geometry can be found with differential evolution. 

 
Index Terms—Board-level interconnects, methodologies and 

algorithms for modeling, simulation and optimization. 

I. INTRODUCTION 

RANSMISSION line behavior is commonplace in printed 

circuit boards (PCBs) operating with ultrahigh speed digital 

signals (~10 GHz bandwidth) and analog signals with mmWave 

frequencies. Dispersion is problematic at these frequencies, and 

minor impedance mismatches along an interconnect will 

produce reflections and distortion in various portions of the 

signal bandwidth. In addition, roughness of copper conductors 

on PCB laminates creates an additional source of dispersion and 

losses [1]. These problems of dispersion and roughness lead to 

signal distortion. A proper description of signal behavior 

requires enforcing causality in descriptions of dispersion in the 

substrate’s dielectric function 𝜀(𝜔) and copper roughness using 

Kramers-Kronig relations [2], which is required in equivalent 

circuit models describing interconnects, e.g., in PCB 

transmission lines for many high speed standards [2] (e.g., USB 

4.0) and 100 Gb/s Ethernet in the IEEE P802.3bj Task Force 

proposal [3]. 

A transmission line is designed by adjusting its geometry in 

CAD software so that its impedance at a specific frequency 

takes a target value. This method does not consider broadband 

impedance matching, losses, velocity dispersion, and/or signal 

distortion. Solving such a design problem is difficult as any 

change in the line’s per-unit-length (p.u.l.) capacitance, 

inductance, or resistance must be compensated by a change in 

one of the other quantities, each of which is related to the line’s 

impedance. A simpler method is to use a existing model for the 

characteristic impedance and incorporate dispersion and 

roughness throughout the signal bandwidth analytically, which 

forms a complex nonlinear optimization problem. 

As a class of heuristics, evolutionary algorithms can be used 

to solve nonlinear optimization problems in electromagnetics 

[4]. This class of algorithms uses iterative solution generation 

techniques to search a solution space for the global optimal 

solution. Multi-objective problems can be addressed by solving 
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one objective while holding the others as constraints, and a 

Pareto surface can be generated through successive iteration. 

Previous work has focused on determining circuit model 

values or dielectric properties using measured S-parameters [2] 

rather than optimizing the line’s geometry. Therefore, a method 

for designing PCB transmission lines with dispersion and 

roughness to a target impedance is presented in this paper. 

Differential evolution was used to determine the geometry that 

minimizes deviations from a target impedance throughout the 

signal bandwidth. Analytical expressions for the characteristic 

impedance of a stripline and a causal model for 𝜀(𝜔) were used 

to minimize deviations from a target impedance while including 

dispersion and roughness up to 20 GHz [2, 5]. The method can 

be applied to other geometries, used with other optimization 

methods, or reformulated as a multi-objective problem to 

balance many signal integrity metrics. Some additional 

objectives include signal distortion metrics, S-parameter 

values, and crosstalk in coupled transmission lines. The 

procedure could also be used in modern CAD applications for 

accurate transmission line design over a broad bandwidth. 

II. THEORETICAL MODEL AND METHODS 

A. Causality, Dispersion, and Copper Roughness 

Building a causal model for a PCB interconnect requires 

enforcing causal representations for 𝜀(𝜔), conductor 

roughness, and the line’s transfer function [1, 2]. Typical causal 

dispersion models for PCB substrates are the Lorentzian or 

wideband Debye models [2]. The RLGC(f) model can be used 

to describe a line’s characteristic impedance in terms of lumped 

circuit elements with dispersion as long as 𝜀(𝜔) = 𝜀𝑅(𝜔) +
𝑖𝜀𝐼(𝜔) has a causal representation. The following causal 

Lorentzian model for striplines on FR4 is valid up to 20 GHz 

[2, 5]: 

 

𝜀𝑅(𝜔) = (𝜀∞ +
𝜀𝑠1−𝜀∞

1+(𝜔𝜏1)2 +
𝜀𝑠2−𝜀∞

1+(𝜔𝜏2)2) 𝜀0

𝜀𝐼(𝜔) = 𝜔 (
(𝜀𝑠1−𝜀∞)𝜏1

1+(𝜔𝜏1)2 +
(𝜀𝑠2−𝜀∞)𝜏2

1+(𝜔𝜏2)2 ) 𝜀0.
 (1) 

 

Typical values of 𝜀𝑠1, 𝜀𝑠2, 𝜀∞, 𝜏1, and 𝜏2 can be found in [5]. 

The conductor’s RMS roughness 𝐻𝑅𝑀𝑆 modifies the dielectric 

constant to 𝜀(𝜔) →
𝜀(𝜔)𝑇

𝑇−2𝐻𝑅𝑀𝑆
 [1]. Dispersion can be placed in 
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standard equations in the causal RLGC(f) model [2] and 

analytical equations for transmission line impedance 

determined using conformal mapping [6]. 

Rather than assume all circuit parameters in the causal 

RLGC(f) model are known a priori, the characteristic 

impedance 𝑍0(𝜔), DC resistance 𝑅0, and causal 𝜀(𝜔) are 

considered known in the method shown here. These are used to 

determine the geometry that most closely matches the line 

impedance with dispersion and roughness 𝑍(𝜔) to a target 

interconnect impedance 𝑍𝑇 throughout the relevant bandwidth. 

In the causal RLCG(f) model, the characteristic impedance 

𝑍0 = √
𝑅+𝑖𝜔𝐿

𝐺+𝑖𝜔𝐶
 is defined in terms of lumped circuit elements [2]: 

 

𝑅(𝜔) = 𝑅0 + √𝜔𝑅𝑠 𝐿(𝜔) = 𝐿∞ + 𝜔−1
2⁄ 𝑅𝑠

𝐺(𝜔) = 𝜔𝐶(𝜔)𝜀0 tan 𝛿 (𝜔) 𝐶(𝜔) = 𝐾𝑔𝜀0𝜀𝑅(𝜔)
. (2) 

 

where 𝑅𝑠 is the p.u.l. skin-depth resistance, 𝐾𝑔 is a geometry 

factor, and tan 𝛿(𝜔) =
−𝜀𝐼(𝜔)−𝜎𝑠𝑢𝑏

𝜀𝑅(𝜔)
 is the frequency-dependent 

loss tangent [2, 5]. Note that the conductance 𝐺0 of typical PCB 

substrates is 𝐺0~10−11 S/m, so 𝐺0 and 𝜎𝑠𝑢𝑏 are ignored in tan𝛿. 

𝐿∞ is the p.u.l. inductance as 𝜔 → ∞ and is taken as a constant 

as PCB laminates are non-magnetic [2]. These circuit 

parameters are related to the characteristic impedance as 

follows: 

 

𝑍0(𝜔) = √
[𝑅(𝜔)+𝑖𝜔𝐿(𝜔)]

𝜔𝐶(𝜔)(𝑖+tan𝛿(𝜔))
. (3) 

 

where the propagation constant is written as 𝛾(𝜔) =

√𝐶(𝜔)[𝜔𝑅(𝜔) + 𝑖𝜔2𝐿(𝜔)][𝑖 + tan𝛿(𝜔)]. 
Accounting for copper roughness on the PCB laminate is 

accomplished by using a causal roughness correction factor 

𝐾(𝜔). This is incorporated into 𝑅(𝜔) by applying the linear 

transformation 𝑅𝑠 → 𝐾(𝜔)𝑅𝑠. Causal models for 𝐾(𝜔) (e.g., 

Hammerstad and Cannonball-Huray models) are found in [1]. 

B. Geometry Optimization with Differential Evolution 

Dispersion and roughness were considered while designing 

to a target characteristic impedance using the 𝐿2 norm of 

𝑍(𝜔) − 𝑍𝑇 in 𝜔 as the objective function: 

 

min [∫ ||𝑍(𝜔) − 𝑍𝑇||
2

𝑑𝜔
𝜔2

𝜔1
]

0.5

,

subject to:  𝐽 <  𝑊
𝐻⁄ < 𝐾 ,

 (4) 

 

This formulation is equivalent to minimizing the mean-squared 

error between 𝑍(𝜔) and 𝑍𝑇. Let 𝑊, 𝑇, and 𝐻 be the width, 

thickness, and distance to the reference plane, respectively; 

these are the variables used to minimize 𝐿2(𝑍(𝜔) − 𝑍𝑇), and 𝐽 

and 𝐾 are constants. The number of variables is reduced from 3 

to 2 when 𝑊
𝐻⁄  and 𝑇

𝐻⁄  are used as optimization variables. 

𝑇
𝐻⁄  is normally fixed based on the PCB stackup, which reduces 

the number of variables to 1. This ensures the line is designed 

within practical manufacturing constraints on laminate 

thickness and copper weight. 

Algorithm 1 shows pseudocode for the differential evolution 

algorithm used to solve (4). Differential evolution proceeds by 

randomly generating a feasible initial solution; trial solutions 

are generated randomly, and the trial solution that moves the 

objective function value closer to an optimum in the solution 

space is accepted as the new solution. Constraint checking for 

inequalities is implemented using the ConstraintCheck and 

ConstraintMod functions [7]. GenerateNew mutates the current 

𝑊/𝐻 value using the standard algorithm in [8]. 

 
Algorithm 1 was executed in Python 3.7 on a PC with a 1.8 

GHz quad-core processor and 8 GB RAM. The time required to 

solve this problem primarily depends on the level of 

discretization used in the 𝐿2 norm; 400 data points from 0.01 to 

20 GHz were used in this method. 

III. EXAMPLE FOR A LONG STRIPLINE 

In this section, the method outlined in Section II is applied to 

the stripline shown in Figure 1. Striplines with and without 

dispersion and roughness will be compared here. The stripline 

without dispersion and roughness has 𝜀 = 4.300+i0.0681, which 

is taken at 5 GHz. On the rough line, 𝐻𝑅𝑀𝑆 = 0.5 µm was used 

with average particle size of 0.2 µm. Wadell’s equation [6] for 

a stripline’s characteristic impedance 𝑍0(𝜔) is shown in (5): 

 

𝑍0(𝜔) =
60

√𝜀𝑅(𝜔)
ln (1 + (

8𝐻

𝜋�̃�
) [(

16𝐻

𝜋�̃�
) + √(

16𝐻

𝜋�̃�
)

2
+ 6.27]). (5) 

 

In (5), �̃� = 𝑊 + (
𝑇

𝜋
) [1 −

1

2
ln ((

𝑇

4𝐻+𝑇
)

2

+ (
𝜋(𝑇

𝐻⁄ )

4(𝑊
𝐻⁄ +1.1𝑇

𝐻⁄
)

𝑚

)] 

and 𝑚 = 6𝐻
(3𝐻 + 𝑇)⁄  [7]. 

 

Using (3), (5), and the phase velocity (
𝜔

𝛾(𝜔)
) with 𝑅(𝜔) = 0, 

 

Algorithm 1: Differential evolution pseudocode 

Input: 𝐾, 𝐽, 𝑍𝑇, 𝑁𝑚𝑎𝑥 

00. While 𝑁 < 𝑁𝑚𝑎𝑥 

01. Generate initial solution 𝑍(𝜔) and 𝑊/𝐻 

02. If 𝑁 <  𝑁𝑚𝑎𝑥 

03.   GenerateNew 𝑊′/𝐻′ and 𝑍′(𝜔) 

04.  If 𝐿2(𝑍′(𝜔) − 𝑍𝑇) < 𝐿2(𝑍(𝜔) − 𝑍𝑇) 

    and ConstraintCheck = True 

05.   𝑍(𝜔) = 𝑍′(𝜔), 𝑁 = 0 

06.   Go to 02 

07.   Else 

08.   ConstraintMod 

09.   𝑁 → 𝑁 + 1 

10.   Go to 03 

11. Else 

12.   End 

 

 

 
Fig. 1.  Stripline transmission line on FR4 showing the definition of the 

geometric parameters in (5). 
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one can derive equations for 𝑍(𝜔) and 𝛾(𝜔) that include causal 

dispersion and copper roughness with linear transformations: 

 

𝑍(𝜔) = √
𝑖𝜔𝑍0

2√𝜀𝑅(𝜔)+𝑍0𝑐0(𝑅0+(1+𝑖)𝐾(𝜔)𝑅𝑠√𝜔)

𝑖𝜔√𝜀𝑅(𝜔)(1−𝑖tan𝛿)
, (6a) 

 

𝛾(𝜔) = √
−𝜔2𝑍0𝜀(𝜔)+𝑖𝜔𝑐0√𝜀𝑅(𝜔)(1−𝑖tan𝛿)(𝑅0+𝐾(𝜔)(1+𝑖)√𝜔𝑅𝑠)

𝑍0𝑐0
2 , (6b) 

 

where 𝑐0 is the speed of light in vacuum. These equations are 

applicable to any transmission line if 𝑍0 and 𝜀(𝜔) are known. 

In (6), 𝑅𝑠 ≈ √
µ0

8𝜎(𝑇+𝑊)2, and 𝐾(𝜔) obeys the Cannonball-Huray 

model [1]. Note that 𝐾(𝜔) could be defined using any other 

copper roughness model to match the line’s morphology. 

For the stripline on FR4 shown in Fig. 1, Table 1 shows the 

values for the parameters in (1) and the conductivity of copper. 

 

 

IV. RESULTS 

Fig. 2 shows the impedance spectra of two striplines (25 cm 

length) designed to a target impedance 𝑍𝑇 = 50 Ω. The load 

capacitance is 𝐶𝐿 = 1 pF with parallel termination at its target 

impedance; these values collectively determine the impedance 

seen at the input to the load, which then determines the return 

loss (𝑆11). The optimized geometry is 𝑊 = 0.1774 mm (6.983 

mil) for the rough, dispersive stripline, and 𝑊 = 0.1741 mm 

(6.856 mil) for the smooth, non-dispersive stripline. The line is 

placed on an 8-layer PCB stackup with H = 0.224 mm and 𝑇 = 

17.5 µm (0.5 oz./sq. ft. copper weight). 

  
The proposed procedure gives a design that provides low 

deviation from the target impedance, despite roughness and 

dispersion. For electrically short interconnects, return loss is the 

quantity of concern, while insertion loss is more critical in long 

interconnects. Fig. 3 compares insertion and return losses on 

both lines. One can see that making the rough stripline slightly 

wider provides slightly lower losses than the smooth stripline. 

 
 Finally, the impulse function can be calculated using the 

line’s causal transfer function for an arbitrary stimulus. Impulse 

responses for rough and smooth lines are compared in Fig. 4. 

The input pulse used here matches that used in [2] (see (46)). 

 
By imposing design for manufacturing constraints, the 

designed stripline meets practical PCB fabrication 

requirements. Additional objectives could also be used in the 𝐿2 

norm in (4), such as wideband S-parameters or insertion loss. 
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TABLE I 
CAUSAL TWO-TERM LORENTZIAN MODEL PARAMETERS 

𝜀𝑠1 𝜀𝑠2 𝜀∞ 𝜏1 (ps) 𝜏2 (ps) 𝜎 (Ω-1m-1) 

4.081 4.068 3.95 82.12 5.712 5.81·107 
 

 

 
Fig. 2.  Optimized impedance spectra for striplines with and without roughness 

and dispersion. 

 
Fig. 3.  Insertion  loss and return loss in the terminated rough and smooth 

striplines (1 pF load capacitance). The inset shows a magnified view of 

insertion loss from 16 to 20 GHz. 

 
Fig. 4.  Impulse responses for rough and smooth transmission lines. The inset 

shows a magnified view, revealing non-causal artifacts on the smooth 
transmission line. 


