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Abstract—This paper proposes a novel and fast constrained
design optimization method based on support vector regression-
active subspace method. The proposed optimization method cal-
culates a linear combination of original design parameters named
active variable as a low-dimensional representation of high-
dimensional design space to transform the non-linear constraint
into a reduced linear constraint for optimization problems, which
successfully derives a simplified and mathematically solvable
equation. A complex high-speed link with 16-dimensional design
parameters is utilized to verify this method and results show
that the proposed method can efficiently find the optimal design
structures compared to interior-point method.

I. INTRODUCTION

High-dimensional design parameters optimization is one of

the most important and challenging problems in the design

process of complex high-speed links [1]. Traditional opti-

mization algorithms lead to computational burdens for finding

an optimal or relative optimal design due to excessive and

repeated link simulation needs. To reduce the computation

requirements, surrogate models established by a small amount

of simulations or measurements are proposed to replace the

link simulations in the optimization routine. Recently, machine

learning techniques are also utilized to describes the inverse

relationship from desired output to design parameters for effi-

cient parameter optimization. Support vector regression (SVR)

can provide the inverse relationship between eye features and

geometrical parameters for high-speed links [2], while the

combination of deep neural network and symbolic Knowledge

Base is used as an intelligent learning architecture for inverse

mapping [3].

In this work, we propose a novel and fast constrained

design optimization method which uses support vector re-

gression based active subspace (SVR-AS) algorithm [4] to

calculate a reduced-dimensional input space of active variables

as a linear combination of original design parameters and

transforms the non-linear constraint into a linear constraint

for optimization simplification. A mathematical formula is

provided in this paper from the linear constraint provided

by active variable for directly finding the optimal design

structure with a specified output and the minimal mean squared

distance from the specific design. Numerical results show

that compared with interior-point method, SVR-AS based

optimization method can successfully and efficiently find the
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optimal design structures for a complex high-speed link with

16-dimensional design parameters.

II. METHODOLOGY

Let X = [x1, ..., xp]
T

represent the input p-dimensional

normalized design parameter space (e.g. board geometry pa-

rameters), Y represents the output of interest (e.g. eye open-

ing), D = {(X1, Y1) , ... (Xn, Yn)} represents sampling data

set, and function h be the non-linear mapping from X to

Y . The objective is to find a set of X that is closet to a

set of specified numbers (normalized to xi = 0) for desired

output. In other words, we want to find the design closest to

a prototype design where the eye opening requirements are

satisfied. Considering the mean squared distance between X
and the nominal numbers, the optimization problem can be

expressed as:

min g (X) = 1
p

∑
1≤i≤p

x2
i ,

s.t. h (X) = Y0.
(1)

A. SVR-AS

SVR-AS method can reduce input design space to a low-

dimensional representation from the directions that perturba-

tion on design parameters influence more on outputs. The

speed and accuracy of SVR compare favorably with artificial

neural networks and stochastic collocation for high-speed link

models [5], [6]. SVR predictive function with Gaussian Kernel

can be expressed as:

f (X) =
∑

1≤j≤n

(α̂j − αj) exp

(
−‖X −Xj‖2

2σ2

)
+ b, (2)

where α̂j and αj are Laplace operator, b is the displacement

of hyper-plane and σ is the width of Gaussian Kernel.

A symmetric and positively semi-definite matrix is defined

using the gradient of Eq. (2) as:

Z =
1

n

∑
1≤j≤n

∇Xf (Xj) (∇Xf (Xj))
T
, (3)

where ∇Xf (X) =
[

∂f
∂x1

, . . . , ∂f
∂xp

]T
. After eigendecom-

position of Z = WΛW−1, let W 1 be the partial set of

eigenvectors corresponding to the largest q eigenvalues and



y = WT
1 X denotes active variable as a lower-dimensional

representation of the input parameters.

B. Design Optimization with Equality Constraints from SVR-
AS

SVR-AS provides a sufficient summary plot to illustrate

the relationship between active variables and expected output,

which can be fitted by polynomial function and then provides

the corresponding active variable y0 for desired output Y0. Eq.

(1) can be derived as:

min g (X) = 1
p

∑
1≤i≤p

x2
i ,

s.t. φ (X) = WT
1 X − y0 = 0.

(4)

Lagrange multiplier method can be used for optimal prob-

lem with constraints. Lagrange function for Eq. (4) can be

expressed as:

L (X,β) = g (X) + βφ (X) , (5)

where β = [β1, ...βq] are the Lagrangian multipliers. The

number of multipliers is equal to the number of eigenvectors

we choose. The solution of the optimal problem is{
∂L(X,β)

∂X = 0
∂L(X,β)

∂β = 0
, (6)

which can be further derived as{
2
pX + βWT

1 = 0

WT
1 X = y0

. (7)

Thus, the optimal design parameters can be expressed by

X = W 1

(
WT

1 W 1

)−1

y0. (8)

III. OPTIMIZATION RESULTS AND DISCUSSION

A. Optimization Example

A chip-to-chip, realistic high-speed link model is considered

as a representative example to verify the proposed optimization

method. Fig. 1 illustrates the entire model that consists of

transmitter, microstrip line, LGA [7], via model, strip line,

via model, LGA, microstrip line and receiver. ANSYS Q3D

simulator [8] and Keysight ADS [9] are used to simulate eye

opening of the high-speed link. The desired output is eye

width of eye opening after receiver. Design parameters of

transmission lines of this link shown in the Fig. 2 and Table

I are considered as the input design space.

B. Results from SVR-AS based Optimization Method

SVR-AS method uses 300 simulated data samples for

forward surrogate model training and generates active vari-

able as a reduced-dimensional design space. Since the first

eigenvalue is much larger than the others, active variable in

this work is defined as a one-dimensional linear combination

of 16 design parameters. Fig. 3 shows the sufficient summary

plot between active variable and corresponding eye width. A
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Fig. 1: High-speed link model and eye diagram.
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Fig. 2: Geometry of microstrip line and strip line.

second-order polynomial function shown in orange color fits

this relationship well with 1.49× 10−24 mean squared error.

Eq. (8) can be used to calculate the optimal design for

desired eye width. In practice, it is common that several

design parameters are fixed at specific values and thus not

in the set of optimization variables. In this work, we fix

εr = 4.4. Even for these requirements, a variant of Eq. (8)

(Xrest = W rest

(
WT

restW rest

)−1 (
y0 −WT

setXset

)
) still

solves the problem directly. Table I shows the optimal results

calculated by SVR-AS based optimization method when eye

width Y0 = 8×10−11 sec is required. For this optimal design,

simulated eye width is 8 × 10−11 sec as required and the

mean squared distance from nominal number is 0.003 for

normalized design parameters. SVR-AS based optimization

method only needs 0.0014 sec to calculate the optimal results

on an AMD Ryzen Threadripper 1950X 16-Core Processor

without additional simulations or surrogate model predictions.
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Fig. 3: Sufficient summary plot and its fitted function.



TABLE I

DESIGN SPACE AND OPTIMAL RESULTS OF THE HIGH-SPEED LINK

Parameter Specified design Range Optimal results from SVR-AS based
optimization method

Optimal results from interior-point
method with SVR model

Unit

Tx microstrip line

εr 4.4 3.6-5.2 4.4 4.4 /
w 5 4.5-5.5 4.9996 4.9995 mil
s 8 7.2-8.8 8.0011 8.0008 mil
h 4 3.7-4.3 3.9999 4.0003 mil
l 11 2-20 11.0920 11.0108 mm

Strip line

εr 4.4 3.6-5.2 4.4 4.4 /
w 5 4.5-5.5 4.9977 4.9980 mil
s 8 7.2-8.8 7.9975 7.9984 mil
H1 8 7.2-8.8 7.9999 8.0000 mil
H2 8 7.2-8.8 7.9952 7.9952 mil
l 275 50-500 323.8759 327.2000 mm

Rx microstrip line

εr 4.4 3.6-5.2 4.4 4.4 /
w 5 4.5-5.5 4.9997 4.9995 mil
s 8 7.2-8.8 7.9994 8.0000 mil
h 4 3.7-4.3 3.9996 3.9994 mil
l 11 2-20 11.0521 11.0630 mm

Simulated eye width 80 80 ps
Eye width evaluations of optimization process / 693 /

Computation time of optimization process 0.0014 7.69 sec
Mean squared distance from nominal design 0.0030 0.0034 /

C. Comparison and Discussion

Traditionally, interior-point method can solve non-linear

constrained minimization problem through a sequence of ap-

proximation problems. In this example, interior-point method

needs 38 iterations and 693 function evaluations to solve Eq.

(1). Eye width is evaluated by SVR predictive model in this

paper. Jointly calling ANSYS Q3D Extractor and Keysight

ADS can also be used in the optimization stage to replace

surrogate model. The optimal results are shown in Table I and

the corresponding simulated eye width result is also 8×10−11

sec. The mean squared distance from nominal design is 0.0034
for normalized design parameters, which is larger than the

result from SVR-AS based optimization method.

Results from Table I illustrate the comparison between

SVR-AS method and interior-point method. SVR-AS opti-

mization method can calculate the optimal results accurately

with extremely low computation cost after the SVR predictive

model is established. However, interior-point algorithm calls

SVR predictive model repeatedly during the iterations. Also it

is worth mentioning that SVR-AS based optimization method

can quickly calculate lots of different settings that satisfies dif-

ferent specific requirements (in this paper, we keep εr = 4.4).

IV. CONCLUSION

In this paper, SVR-AS based optimization method is pro-

posed for fast design optimization of complex high-speed

link model. SVR-AS based optimization method utilizes the

sufficient summary plot calculated by SVR-AS algorithm

to successfully transform the complex non-linear constraint

optimization into a linear equality constraint minimization

problem and provides a directly solvable function for the opti-

mal results calculation. Compared with interior-point method,

a traditional non-linear constrained minimization algorithm,

the proposed method has an extremely low computation cost

and a better optimal result. Results show that SVR-AS based

optimization method is promising for high-speed link pre-

design.
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