
979-8-3503-1798-5/23/$31.00 ©2023 IEEE 

Recent Progress on Signal Integrity Modeling of 
Neuromorphic Chips by the PEEC Method 

Hanzhi Ma1, Tuomin Tao1, Quankun Chen1, Da Li1, Jose Schutt-Aine2, Andreas Cangellaris3, Er-Ping Li1 
1ZJU–UIUC Institute, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou China 

2Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA  
3NEOM University, NEOM, Saudi Arabia

Abstract—With the rapid advances of artificial intelligence and 
its applications, the design of memristor-based neuromorphic 
chips inspired by the human brain has become an important area 
of research. Signal integrity issues, such as crosstalk and IR drop, 
affect the performance of these chips and necessitate the use of 
signal integrity modeling and analysis methods during the early 
stages of chips design. In this mini review, we summarize recent 
progress on the application of the Partial Element Equivalent 
Circuit (PEEC) method to the signal integrity modeling of 
neuromorphic chips. 
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I. INTRODUCTION 
Artificial intelligence (AI) has experienced ups and downs 

since it was formally put forward at Dartmouth Conference in 
1956, and is now in the third wave of development and 
achieving new breakthroughs in many fields such as finance, 
medical care, education, transportation, logistics, security, 
leisure and entertainment. However, due to the "memory wall" 
problem of the traditional von Neumann architecture, efficient 
execution of artificial intelligence operations has become a huge 
challenge. Therefore, more and more world-leading scientific 
research institutions and companies have begun to focus on new 
artificial intelligence hardware and actively promote the 
research and development of neuromorphic chips [1-2]. 

Inspired by the working mechanism of human brain, 
neuromorphic chips are composed of devices that imitate 
neurons and synapses, which are more in line with biological 
characteristics with low energy consumption and high efficiency, 
thus holding the promise of super-high computing power, 
autonomous learning ability, and perceptual computing power 
beyond that of modern digital computers. Memristor-based 
neuromorphic chip [3-4] is a typical circuit architecture of 
neuromorphic chips, which adopts a crossbar array structure, 
utilizes memristors as artificial neural synapses, and realizes 
signal transmission between crisscross interconnecting wires. 
Such chip design reduces the steps of accessing the off-chip 
memory when acquiring data, and simply realizes the vector 
matrix multiplication on the circuit level. This results in higher 
learning ability and improved efficiency of AI computing.  

Memristor-based neuromorphic chips occupy a smaller area 
with lower power consumption compared with neuromorphic 
hardware based on traditional devices. However, due to the 
unstable device performance, special circuit structure, high 
integration and high operation speed, the reliability of the 
memristor-based neuromorphic chips is still poor. In particular, 
the driving signal of neuromorphic chips often shows transient 
time-varying pulse characteristics, which has the unique 
characteristics of low power consumption, low delay and space-
time combination. Meanwhile, the integration of neuromorphic 
chips with other functional chips in a complex electromagnetic 
environment, calls for assessment of their signal integrity (SI) 
and power integrity during operation. For example, Fig. 1, 
depicts three SI concerns, namely, IR drop, crosstalk, and sneak 
path, which may affect operation and performance. Thus, it is 
necessary to consider the SI problems in the design stage of 
neuromorphic chips. 

 
Fig. 1. Typical signal integrity issues in memristor-based neuromorphic chips. 

At present, several modeling, analysis and design methods 
are being used to investigate signal integrity issues in memristor-
based neuromorphic chips. Among them, the Partial Element 
Equivalent Circuit (PEEC) method [5] has been widely 
considered and studied. This paper reviews recent progress on 
the application of PEEC to signal and power integrity analysis 
of neuromorphic chips. Furthermore, starting from the 
development of PEEC method in memristor-based 
neuromorphic chips, this paper introduces the theory of 
extracting parasitic parameters of neuromorphic chips by PEEC 
method in detail, and discusses future research opportunities. 

II. EQUIVALENT CIRCUIT MODELING OF MEMRISTOR-BASED 
NEUROMORPHIC CHIPS 

As depicted in Fig. 1, memristor-based neuromorphic chips 
have periodic structure, which is composed of memristor and 
interconnection lines. Establishing the equivalent circuit model 
of crossbar array circuit offers an intuitive and convenient 
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method to analyze signal integrity issues of neuromorphic chips. 
Included in the development of the equivalent circuit model is 
the modeling of the interconnection lines.  

In early efforts, most circuit modeling of memristor-based 
neuromorphic chips only focused on accounting for the 
resistance of the interconnection lines, ignoring the influence of 
propagation delay and electromagnetic coupling on performance 
[6-7]. Such modeling is effective when the line width in 
memristor-based neuromorphic chips is of nanometer scale. For 
such cases, there are two typical signal integrity problems in 
neuromorphic chips: IR-drop and sneak path. However, when 
the wire width is larger and of micron-scale, the influence of the 
electromagnetic behavior of the interconnects must be 
accounted for in order to correctly predict the impact of voltage 
degradation, time delay, overshoot, crosstalk and coupling on 
the performance of the neuromorphic chips. 

Commercial software (e.g., ANSYS Q3D Extractor) can be 
utilized to extract the relevant interconnect parameters for 
electromagnetic modeling of memristor-based neuromorphic 
chips [8]. Alternatively, PEEC modeling has been used to 
analyze the electromagnetic effect of the memristor-based 
neuromorphic chip, and study the recognition rate of the 
classification tasks [9]. A novel approach combining the PEEC 
method and domain decomposition was proposed in [10] for the 
modeling of structures depicted in Fig. 2. Using this method, the 
authors analyzed the influence of interconnection parasitic 
effects on the online training and testing process of 
neuromorphic chips [10]. This approach can be extended to any 
array size. Using this approach, the research team extended the 
signal integrity research of memristor-based neuromorphic chip 
to the examination of the influence of parasitic effect on spiking 
signal transmission [11] and STDP learning mechanism [12], 
and developed spike signal sequence [13] as well as STDP 
learning curve [14] which is more suitable for hardware 
implementation.  

From the above, it is clear that the PEEC method offers a 
convenient equivalent circuit-based electromagnetic modeling 
framework to analyze the impact of electromagnetic effects on 
the performance of memristor-based neuromorphic chips. In the 
following, we provide a brief summary of the ways to generate 
the PEEC model, for crossbar array geometries depicted in Fig. 
2. The reader is directed to [9]-[13] for more details. 

III. COMPREHENSIVE PEEC MODELING THEORY OF MEMRISTOR 
BASED NEUROMORPHIC CHIPS  

The PEEC method is based on the electric field integral 
equation and interprets the electromagnetic field interactions 
described by the integral equation between electrically small 
elements of the structure under study into equivalent circuits. 
The time-domain PEEC method is very suitable for the 
modeling of the neuromorphic crossbar array because it is 
compatible with programming and is able to flexibly model the 
variation of the memristor conductance during neural network 
training process. The basic modeling method for crossbar array 
based on PEEC is described next. 

A. Partial Elements Calculation 
The first two steps of PEEC involve the discretization of the 

interconnect structure and the calculation of the elements of the 

PEEC circuit. Referring to Fig. 2, the partial resistance R can be 
directly calculated by: 
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where ρ stands for resistivity, l, w and h represent unit wire 
length, width and height, respectively. Neglecting 
electromagnetic retardation effects for the purposes of this 
modeling, the partial inductance between cells m and n is 
calculated as: 
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where ma  and na  are the cross-sections, which are 
perpendicular to the direction of current, of cells m and n, 
respectively. mv  and nv  are the volumes of volume cell m and n, 
respectively. 
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where iS  and jS  are the surface areas of area cells i and j, 

respectively. 

ir  and 


jr  are the centers of area cells of i and j, 

respectively.  

 
Fig. 2. Circuit modeling method for memristor-based neuromorphic chips 
[10]. (a) memristor-based neuromorphic chip; (b) and (c) are unit cell and 
equivalent circuit model based on PEEC. Reprinted with permission from [10]. 
Copyright 2021 IEEE. 

B. PEEC Circuit Model 
For the solution of PEECs in the time and frequency domain, 

a Modified Nodal Analysis (MNA) method is presented. The 
MNA method is widely used in modern circuit analysis software 
due to its full-spectrum properties and flexibility to include 
additional circuit elements. The calculated values of all the 
partial elements, as detailed in the previous section, are stored in 



 

matrices to facilitate the formulation of the circuit equations. 
The resulting time domain matrix equation can be written as: 
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where R, L, C represent, respectively, the resistance, inductance, 
and short circuit capacitance matrix, H represents the 
connectivity matrix, and Vs is the voltage source excitation. V 
and I are node voltages and branch currents to be solved. Such 
PEEC based circuit modeling method was utilized to analyze the 
output signals of memristor-based neuromorphic chips [10]. The 
output currents before ADCs of the farthest vertical line (bit line) 
matched well with the 3D full-wave simulation outcomes 
obtained through ANSYS HFSS for a 100x6 memristor-based 
neuromorphic chip, as depicted in Fig. 3 (a) and (b). As shown 
in Fig. 3 (c) and (d), PEEC modeling method was also 
successfully applied to analyze the effects of different circuit 
structure designs [11] and input signal parameters [13] on output 
signal.  

 
(a)                                                         (b) 

      
(c)                                                         (d) 

Fig. 3. Neuromorphic chip analysis using PEEC modeling method: (a) and (b) 
comparisons between PEEC modeling and ANSYS HFSS simulation results 
with input signal rise times of 10 ns and 1 ns, respectively. Reprinted with 
permission from [10]. Copyright 2021 IEEE. (c) output signal with different 
crossbar array sizes. Reprinted with permission from [11]. Copyright 2022 
IEEE. (d) output signal with different input signal parameters. Reprinted with 
permission from [13]. Copyright 2023 IEEE. 

IV. DISCUSSION AND FUTURE PROSPECTS 
While currently the PEEC method has been proven to be an 

effective tool for memristor-based neuromorphic chips, it can be 
further improved in the following aspects: 1) High Frequency 
Modeling: The PEEC model described above does not include 
electromagnetic retardation effects. Thus, while its accuracy is 
sufficient at lower frequencies, it becomes inaccurate at high 
frequencies. Including electromagnetic retardation will allow us 
to improve its accuracy across a wider frequency range. 2) 
Memristor Modeling: As a new device, memristor is not a 
mature technology, so it is difficult to maintain consistency, 
stability and achieve high-density integration scale. In view of 
the different and complex working mechanism and 
characteristics of memristor, optimizing the modeling method of 

memristor and reducing the modeling error can effectively 
improve the design efficiency and yield of Memristor. 3) SI-PI-
EMI Co-Simulation: Besides SI issues, the proposed PEEC-
based modeling can be extended to study power integrity (PI) 
and electromagnetic interference (EMI) effects on the 
performance of memristor-based neuromorphic chips.  

V. CONCLUSION 
The application of the PEEC method to the signal integrity 

analysis of memristor-based neuromorphic chips has been 
reviewed in this paper. Given the relevance of neuromorphic 
chips to computing systems for AI applications, modeling 
methodologies that can predict the impact of electromagnetic 
effects on the performance of such chips need to be advanced 
and implemented. As discussed in this paper, PEEC offers a 
mature and intuitive equivalent circuit modeling framework to 
support such analysis.  
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