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Abstract—The design of microwave devices relies on the
modeling and simulation of mathematical models of such devices.
Usually, the mathematical models are very large, causing long
simulation times and making the design process very slow. In
this work, we propose a deep learning method for fast frequency-
domain simulation of parametric models of microwave devices.
We focus on the fast evaluation of the parameter-dependent
transfer function via approximating the transfer function with a
neural network. After being properly trained using limited data
of the transfer function, the trained neural network can evaluate
the transfer function at any parameter sample with acceptable
accuracy. The proposed deep learning method is tested on a
PEEC model of a microwave device and shows its efficiency in
fast predicting the transfer function.

Index Terms—Deep learning, Partial Element Equivalent Cir-
cuit (PEEC) method, fast transfer function prediction.

I. INTRODUCTION

Frequency-domain analyses are often implemented in com-
putational electromagnetics for design purposes. This is usu-
ally done by simulating large mathematical models in the
frequency domain, in particular, by computing the transfer
functions at many frequencies in a large frequency interval.
Moreover, to achieve the goal of optimal design, the response
of the system under the influence of design parameters needs
to be analyzed. As a result, the parameter-dependent transfer
function is repeatedly computed at many different values of
the parameters and different frequencies. The computation is
expensive when the spatially discretized finite element models
or the PEEC models are of large dimensions.

Parametric model order reduction (PMOR) methods have
been proposed to reduce computational costs while keeping the
output response or transfer function sufficiently accurate in the
whole parameter and frequency/time domain [1], [2]. In this
work, we consider systems with geometrical parameters and
seek methods for fast transfer function evaluation while both
the frequency and the parameters change in certain ranges. We
don’t require that the system matrices are explicitly available.
Instead, only data from the transfer function are needed. In
this sense, we are considering non-intrusive PMOR. MOR
methods based on Loewner framework use only the data of
the transfer function to build the reduced-order model and
the reduced transfer function [3], [4]. Non-intrusive PMOR

methods based on pole-matching are proposed in [5], etc.
The above-mentioned non-intrusive PMOR methods use a
rational function to approximate the transfer function. In some
cases, the transfer functions are non-rational, for example,
the transfer function of time-delay systems with many delays.
Neural transfer function based PMOR methods are proposed
in [6], [7], which nevertheless require that the original system
matrices are available to compute the reduced frequency-
domain responses, therefore may not applicable to measured
data.

Recently, machine learning is used to predict the transfer
function for non-parametric time-delayed PEEC models [8].
The method proposed there has no limitation on the transfer
function, i.e., non-rational transfer functions of time-delay
systems with many delays can also be accurately predicted by
the proposed neural networks. This may not be achieved by
the rational function based methods [6], [7], [9]. Furthermore,
the method in [8] does not require the original system matrices
to be available, which can be easily applied to measured data.

In this work, we consider applying deep learning methods
to enable fast frequency-domain analysis for parametric PEEC
models. A deep feed-forward neural network (DFNN) was
used in [8], where a DFNN is established for each entry
of the transfer function matrix. We modify the structure
of the DFNN so that a single DFNN can predict all the
entries of the transfer function, without inducing much extra
offline training time. In this way, we save a lot of training
time for systems with multiple inputs and multiple outputs.
Furthermore, the proposed single DFNN is able to predict
transfer functions under physical and geometrical parameter
variations. In contrast to the existing neural transfer function
based PMOR methods [6], [7], where the NNs are trained to
learn the poles/residues or the coefficients of polynomials in
the assumed rational representation of the transfer functions,
we use DFNN to directly learn the values of the transfer
functions. Consequently, the proposed DFNN naturally avoids
the pole-residue mismatching issues in [6], [7], [9]. Another
advantage of the proposed DFNN is that only one set of
training data with one time of training is sufficient to achieve
accurate transfer function prediction, whereas two sets of
training data from vector fitting/reduced-order models and the



original electromagnetic simulation, respectively, are needed
to train a neural network for two times in [6], [7], [9].

The next section presents parametric n-port electromagnetic
systems in the frequency domain. Then we introduce the struc-
ture of DFNN used for transfer function prediction. Simulation
results are detailed in Section IV. Finally, conclusions are
given.

II. PARAMETRIC n-PORT ELECTROMAGNETIC SYSTEMS

It is known that frequency-domain analysis of electromag-
netic systems is usually done via computing the Z, Y , or S
parameters at discrete frequency points in the frequency range
of interest. During the optimization and design phases, finding
the link between transfer (function) matrices and geometrical
parameters could be very useful in reducing design times.
For this reason, mathematical models of the parameterized n-
port electromagnetic systems are repeatedly simulated at many
samples of the parameters and frequencies. The model in the
frequency domain is in the form of a transfer function:

H(s,µ) = C(µ)(G(s, µ))−1B(µ) +D(µ), (1)

where G(s,µ) ∈ RN×N ,B(µ) ∈ RN×n,C(µ) ∈ Rn×N and
D(µ) ∈ Rn×n. µ ∈ Rp is the vector of parameters. Since
the system has n ports, H(s,µ) is a matrix with n rows and
n columns. N is often very large, making the computation
of H(s,µ) very slow. Depending on the problem considered,
H(s,µ) can be rational or non-rational. The goal of this work
is to find a generic model able to fast reproduce the frequency
behavior of the system when the parameters change. Artificial
neural networks can help with this need: after an initial effort
to generate data for training, the trained neural network (NN)
can be expressed as an operator mapping the parameter and
frequency to an output: gθ : (µ, f) 7→ H̃(µ, f):

H̃(µ, f) = gθ(µ, f). (2)

Here, H̃ is the output vector of the NN with dimension
dependent on the number of ports n and the type of the NN. θ
is the vector of hyper-parameters of the neural network, e.g.,
the number of hidden layers and units.

III. DEEP LEARNING FOR PARAMETERIZED
FREQUENCY-DOMAIN SIMULATION

In this work, we propose to apply a DFNN for parametric
transfer function prediction.

A. DFNN structure
DFNN is also called multilayer perceptrons (MLP). The

input data are fed into the NN, then are weighted and sum-
marized. A weighted sum of the input vector plus a bias is
then taken as the argument of an activation function g, which
completes the first hidden layer. The output of the first hidden
layer is then fed into the next hidden layer, and the same
summation and activation then continue. The final layer gives
the output of the NN. Usually, there are no activation functions
on the output layer. The network can be described as:

H̃ = WT
ℓ g(· · · g(WT

1 g(WT
0 x+ b0) + b1)) + bℓ, (3)

where x is the vector of inputs. Wi ∈ Rni×ni+1 , bi ∈ Rni , i ≥
0 are the weight matrices and bias vectors. g : Rni 7→ Rni+1

is the vector of activation functions. Typically, g = (g, . . . , g)
and g(x̃) = (g(x̃1), . . . , g(x̃ni

)). g : R 7→ R is an activation
function, and x̃i is the i-th entry of x̃. In other words, the
activation function is applied to the weighted input vector
element-wise. The weights and biases on all the layers of NN
are to be optimized during the training of the NN.

B. Data preparation

Correct formulation of the data plays a key role for the
success of deep learning. We explain how to prepare the
input-output data for the DFNN. The PEEC models have the
property of reciprocity leading to symmetric transfer matrices.
Therefore, for an n-port model, we only need to consider
n · (n + 1)/2 outputs, so that only n · (n + 1)/2 entries of
the transfer matrix need to be predicted by the NN. Since the
activation functions of an NN are all real-valued functions,
we let the NN predict the imaginary part and real part of the
transfer matrix separately. However, the real and imaginary
parts can be predicted simultaneously.

As for DFNN, the vector of input fed into DFNN is
(µ1, . . . , µp, f), so that the dimension of the input fed into
the DFNN is p + 1. The output is a vector of n · (n + 1)
entries including the real and imaginary part of the transfer
matrix corresponding to the n ·(n+1)/2 ports. As a result, the
dimension of the DFNN output layer is set as n·(n+1). When
training the DFNN, the input data can be seen as a matrix of
nµ · nf rows and p+ 1 columns, since we train DFNN using
nµ · nf samples of the input vector. Here, nµ is the number
of parameter samples and nf is the number of frequency
samples. The output data corresponding to the training input
data is also a matrix of nµ · nf rows but n · (n+ 1) columns.
When using the trained DFNN for prediction, any combination
of the samples of µ and the sample of the frequency, i.e.
(µi1

1 , . . . , µ
ip
p , fj) can be fed into DFNN, from which we can

get the predicted imaginary and real parts of the transfer matrix
entries at (µ1(i1), . . . , µp(ip), fj). To train the DFNN, we use
a mean squared error (MSE)-based loss function.

IV. NUMERICAL RESULTS

The proposed approach has been tested on the parameterized
model of a Wireless Power Transfer System shown in Fig. 1.
We consider five geometrical quantities as parameters: the
width b of a single conductor, the thickness h of a single
conductor, the distance D between coils and the lengths L1,
L2. We fixed n = 2 electrical ports, explicitly visible in Fig.1
too.

To generate the data for training the neural network,
we compute the S-parameters at 20 frequency samples in
[5, 30]MHz. The parameters have central points: b = 1·10−3m,
h = 1 · 10−3m, L1 = 88.6 · 10−3m, 88.6 · 10−3m and
D = 0.01m, and vary with ±10%. We take 3 samples for
each parameter, then take the tensor product of them, resulting
in total 35 samples of [b, h, L1, L2, D]. All parameter
samples are further combined with the 20 frequency samples



Fig. 1. WPT System.

to obtain 35 · 20 = 4860 samples of the six input variables
(f, b, h, L1, L2, D) for the DEFF. We take 4660 samples as
training data and 100 samples as the validation data. The
remaining 100 samples are the testing data. For DFNN, the
dimension of the output is n · (n+ 1) = 6.

The DFNN has 6 hidden layers with 10 neurons on each
layer. The sinusoidal function in TensorFlow: tf.math.sin is
taken as the activation function function, which provides better
results than other activation functions. After 2422.79s with
2000 epochs, the network was trained and able to predict in
0.00501s the S-parameters at all the testing parameters and
frequencies. The training time could be largely reduced when
we use a more efficient network structure, e.g., autoencoder,
convolutional network. This will be the future work.

Predictions for test values are shown in Fig. 2, where testing
geometrical samples are b = 9 · 10−4m, h = 9 · 10−4m, L1 =
79.7 · 10−3m, L2 = 79.7 · 10−3m, D = 0.009m for test 1,
b = 9 · 10−4m, h = 9 · 10−4m, L1 = 79.7 · 10−3m, L2 =
79.7 · 10−3m, D = 0.01m for test 2, b = 9 · 10−4m, h =
9·10−4m, L1 = 79.7·10−3m, L2 = 79.7·10−3m, D = 0.011m
for test 3. “NN testi”, i = 1, 2, 3, are the predicted values
of the S-parameters and “PEEC testi”, i = 1, 2, 3, are those
obtained from direct simulation. These show that DFNN is
accurate in predicting the magnitudes of both S-parameters
at 3-testing parameters. Similar accuracy is also achieved by
DFNN at other testing parameters and for the phases of the
S-parameters.

V. CONCLUSION

In this work, we proposed a fast frequency domain simu-
lation method based on deep forward neural network. After
being trained using limited data, the proposed DFNN can
fast and accurately predict the transfer function at any testing
parameter. A main novelty of the proposed method is that
it does not use any rational formulation to approximate the
transfer function, and therefore is also accurate for non-rational
transfer functions. The proposed approach may not guarantee
accurate transient simulation. Accurate transient simulation
could be studied in the future by customizing the loss function
to include the internal relation between the real and imaginary
parts of the transfer function.

(a) Magnitude of S11 from port 1 to port 1.

(b) Magnitude of S12 from port 2 to port 1.

Fig. 2. Example 1: DFNN prediction for S11 and S12.
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