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Abstract—This paper poses the question of whether a dataset
can be identified to be causal by employing rational function
fitting techniques. Specifically, overfitting is considered to be a
factor that could prevent the user from correctly identifying
causality. Without the emphasis on overfitting, we show that every
frequency-response data is causal. The ability of the adaptive
generation (AG) scheme in highlighting an ideal model order is
used as an example where the fit may inform the user about the
causal quality of the data.

Index Terms—rational function approximation, blackbox
macromodeling, causality, measurement data

I. INTRODUCTION

There is increasing interest in verifying the integrity of
scattering parameters obtained from electromagnetic simu-
lators or vector network analyzers (VNA). A primary con-
cern is the causality of the time-domain response when the
scattering parameters are used as blocks in a system-level
circuit simulation. If the system-level simulation consists of
linear elements, convolution or Fourier techniques can be
used. Otherwise, an equivalent circuit model needs to be
generated from the scattering parameters. Such a lumped-
element model has an exact rational function representation.
Frequency response data with causality issues results in a
rational function, or equivalently a circuit model, with unstable
poles. This is an unacceptable error that warrants discarding
the data and repeating the simulation or the measurement.
Repeating a measurement is especially a severe problem, as
there is usually a time gap between measurement and the use
of that data in circuit simulation, and these steps are usually
the responsibility of different groups in the semiconductor
industry.

Causality requires that the response cannot precede the
input. This is expressed in terms of the system’s impulse
response as h(t) = 0 for t < 0. The implication for its
Fourier transform H(ω) = R(ω) + jX(ω) is that R(ω) and
X(ω) have to be a Hilbert transform pair (also called Kramers-
Kronig or dispersion relation.) The difficulty of verifying
causality in VNA measurements is that what is measured are
the samples Hi of H(ω) at the frequency points ω = ωi,
and not h(t), and numerical calculation of Hilbert or Fourier
transforms suffer from the inherent bandlimited and discrete

nature of the measured data [1]–[4]. Worst-case error bounds
are presented in [5], where the data is confirmed as noncausal
if it is outside worst-case error bounds. Such techniques
become more accurate as the measured data becomes densely
sampled and linearly spaced. Fast, discrete transforms are
readily available and robust; however, they do not work for a
general-purpose methodology where the frequency sweep for
measurement is selected by the user and could be narrowband,
not linearly spaced, etc. This makes checking the causality of
measured frequency responses by discrete Fourier or Hilbert
transforms or numerical integration impractical.

There is, however, a more fundamental issue in certifying
the causality of frequency-response data. A common intuition
is that the data can be certified to be causal if we can
interpolate it with a causal function. We show in this paper
that this intuition is misleading. As proof, we present a causal
function that interpolates random data. This fundamental result
obviates the causality checks for frequency-response data. We
instead propose a causal quality definition to account for
causality issues in the practical use of frequency-response data.

II. ARE ALL FREQUENCY-RESPONSE DATA CAUSAL?

Assume that an interpolating rational function r(s) could
be found that would precisely match the measured data as
r(jωi) = Hi at all the frequency points si = jωi. If r(s)
is a causal function, then the measurement can be verified as
causal.

A rational transfer function with poles on the left-half
plane, which implies bounded-input bounded-output stability,
represents a causal system [6]. There is, in fact, always an
interpolating function with stable poles for arbitrary data on
the imaginary axis. The proposed interpolating function for n
arbitrary data points is:

r(s) =

∑n
i=1 sci

Ri+Xis/ωi

s2+ω2
i

c0 +
∑n

i=1
sci

s2+ω2
i

(1)

Equation (1) represents r(s) in barycentric form. It in-
terpolates the data Ri + jXi at the given frequency points
s = jωi similar to a Lagrangian interpolation as long as the
weights ci are nonzero [7], [8]. Assume that the weights are
all positive; for example, ci = 1 for all i. The denominator
of r(s) is a positive-real function consisting of the summation979-8-3503-1798-53$31.00 ©2023 IEEE
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Fig. 1. A rational function interpolating random data points. The poles are
all stable; therefore, the rational function represents a causal system.

of the positive constant 1 and the impedance of a lossless LC
network. Therefore, its zeros, the poles of r(s), lie in the left
half plane. In fact, r(s) interpolates any data provided at n
frequencies with the same set of poles. It is easy to see that
r(s) reduces to a rational function, as the s2 + ω2

i terms are
common in the denominators and cancel out. As a result, (1)
is a rational function with stable poles; therefore, it represents
a causal system, interpolating arbitrary complex data points.

An example is shown in Fig. 1 for 5 data points. The prior
intuition would be that the Kramers-Kronig relations would
not hold, as the real and imaginary parts of the data are
independently, actually randomly, generated. However, it is
interpolated with a stable rational function, confirming the
causality of the data. The implication is that there is no
noncausal measured or simulated data – all data are causal,
satisfying Kramers-Kronig relations.

III. CAUSAL QUALITY OF MEASURED DATA

The results of the previous section are certainly not validated
by everyday engineering practice, where ”bad data” frequently
results in modeling and simulation difficulties. This contradic-
tion is resolved with consideration of practical issues caused
by so-called noncausal data. The causality of measured data
needs a definition beyond Kramers-Kronig relation (which can
always be satisfied with an interpolating causal function). The
definition of causality needs to be accompanied by the assump-
tion made for the behavior of frequency response between the
data points. For example, the interpolating rational function in
(1) has 2n poles for n data points. This rational function is
certainly overfitting the data. Such interpolation methods tend
to have large fluctuations between the interpolation nodes [9]
as can also be seen in Figure 1. As a result, there is very low
confidence in this interpolating rational function to recover
the original transfer function from its discrete points. What
is needed is a rational function approximation, rather than
interpolation, based on a methodology to prevent overfitting.
The proposed definition for causality of data is:

Definition 1: Frequency-response data has good causal
quality if it can be approximated well with a causal function
without overfitting.

A causality metric can now be determined based on the
quality of the fit, for example, using a rational function with
stable poles. We note that application of the vector fitting
algorithm [6], [10] to assess the causality of the data would
be in the spirit of this definition. However, vector fitting is not
the best choice, as it does not directly address the overfitting
problem.

IV. ADAPTIVE GENERATION OF RATIONAL
APPROXIMATIONS

In [12] we have presented the adaptive generation (AG)
algorithm for gradually building up a rational approximation.
In AG, we find the rational function r(s) = b(s)/a(s)
that minimizes least-squares residual error from measurement
data H , so that b(jω)/a(jω) ≈ H . This is a non-linear
least-squares problem due to the unknown coefficients of
the denominator polynomial a(s), which must be a Hurwitz
polynomial for r(s) to represent a causal system. We solve the
linearized version b(jω)/â(jω) ≈ Ha(jω)/â(jω) iteratively
in a heuristic approach, where we start with â(s) = 1. At each
iteration, we take the order of a(s) to be one larger than â(s),
and start the next iteration with â(s) = a(s) until convergence.
This allows to add one pole at a time to the rational function
approximation.

Measured data of a common-mode filter per the design
in [11] was used to test how AG would be able to detect
over-fitting and causality. AG was run in stable mode, which
indicated that it was conducting pole-flipping for unstable
poles, and in an unstable mode where this was turned off. The
original measurement data has good causal quality as shown
in Fig. 2 and Fig. 4. To obtain an example with low causal
quality, an additional j0.05 term was added to each datapoint.
As shown in Fig. 3 and Fig. 5, the error in fitting data is now
higher with a stable fit than with the unstable option, indicating
low causal quality of the modified data.

V. CONCLUSION

In this paper, the question was posed about whether causal-
ity can be identified from the data alone. It was shown that we
can always find an interpolating rational function with stables
poles, representing a causal function. The implication is that
if there is overfitting, it may be not possible to discern if the
original data points were causal or not. AG is presented as an
algorithm which, due to its ability to adaptively determine the
model order, may prevent overfitting, and therefore provide
an indication as to whether the original data indeed has good
causal quality. This is shown in an example using measurement
data from a VNA. To compare the outcome when the data has
low causal quality, an addition of a purely imaginary term and
a comparison of the resulting error with and without stable
poles were performed.
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Fig. 2. A comparison of the fit on measured data from a common-mode filter
in [11] using AG with 60 poles. The function visibly fits the data.
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Fig. 3. A comparison of the fit on measured data from a common-mode filter
in [11] using AG with 60 poles with the addition of a j0.05 term for the
comparison of the fit of AG to data with low causal quality.
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Fig. 4. A comparison of the RMS error from measured data from a common-
mode filter in [11] using AG with 60 poles. Enforcing stability of poles does
not increase the residual error, indicating data with high causal quality.
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Fig. 5. A comparison of the RMS error from measured data from a common-
mode filter in [11] using AG with 60 poles with the addition of a j0.05 term
for the comparison of the fit of AG to data with low causal quality.
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