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Abstract—In this paper, an approach for obtaining the rational
approximations used in the generalized Method of Characteristics
(MoC) transmission line model is developed. Vector fitting is done
offline and the proposed model is obtained analytically using pre-
determined rational coefficients, the per-unit-length parameters,
and the line length. The algorithm is developed for two-conductor
transmission line structures with frequency-independent per-
unit-length parameters with negligible conductance effects. It is
shown that the proposed methodology can provide more accurate
results for challenging line modelling problems, such as very long
transmission lines, when compared with HSPICE’s W-Element.

Index Terms—circuit simulation, interconnect modeling,
method of characteristics, transient analysis

I. INTRODUCTION

Modeling transmission lines accurately is important for
transient analysis when determining near and far-end voltage
measurements for power application, on-chip, and printed
circuit board interconnect modelling. Transmission line trans-
fer function solutions are easily calculated in the frequency
domain; however, the difficulties in finding corresponding time
domain solutions lead to challenges in finding accurate time
domain models.

Generalized Method of Characteristic (MoC) approaches
[1–6] use delay extraction to obtain computationally efficient
models. Although this approach is efficient for electrically long
lines, as the line length or losses of the line increase, the
implementation of the generalized MoC becomes challenging
due to the difficulties in obtaining the rational approximations
for the model.

In order to develop a more accurate generalized MoC
model, this paper provides an analytic formulation based on
[5, 6] to efficiently obtain the model using predetermined
rational coefficients, the per-unit-length (p.u.l.) parameters,
and line length. To obtain analytic expressions without having
to perform curve fitting whenever the p.u.l. parameters and
line length are changed, vector fitting [7–9] is performed
on key functions offline and the rational coefficients are
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stored. These functions are normalized based on the p.u.l.
parameters and can be linearly scaled with the line length. The
accuracy of the curve fitting can be verified offline to ensure
accurate time domain results. The numerical example shows
that the proposed approach can provide more accurate results
for challenging line modeling problems such as very long
transmission lines when compared to HSPICE’s W-Element
[10].

II. REVIEW OF THE GENERALIZED METHOD OF
CHARACTERISTICS

Distributed transmission line circuits with a line length l
and per-unit-length resistance, inductance, conductance, and
capacitance, defined by R(s), L(s), G(s), and C(s) ∈ R,
respectively, are modelled using Telegrapher’s equations which
can be expressed in the Laplace domain as [1–4]

I1(s) = Y0(s)V1(s)− J1(s) (1)

I2(s) = Y0(s)V2(s)− J2(s) (2)

J1(s) = H(s)(Y0(s)V2(s) + I2(s)) (3)

J2(s) = H(s)(Y0(s)V1(s) + I1(s)) (4)

H(s) = e−γ(s)l (5)

where s is the Laplace variable. Y0(s) is the characteristic
admittance and γ(s) is the propagation function as defined by

Y0(s) =
√
(G(s) + sC(s))(R(s) + sL(s))−1 (6)

γ(s) =
√
(G(s) + sC(s))(R(s) + sL(s)). (7)

V1(s), V2(s), I1(s), and I2(s) represent the terminal voltages
and currents at the near and far end.

Since the solution of (1)-(5) does not have a Laplace Inverse
representation, rational approximations are needed for time
domain analysis. To obtain an efficient model for electrically
long lines, the generalized MoC algorithms perform delay
extraction on the propagation operator H(s) as

H(s) = e−sT lQ(s) (8)

where T l is the extracted delay and rational approximations
are required for Y0(s) and Q(s). However, obtaining the
rational approximation of Q(s) can lead to difficulties as the
line length and losses increase.
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Fig. 1. Frequency response of the (a) real and (b) imaginary part of X1(s′)
for a rational approximation using 5 and 20 poles compared with the accurate
frequency response with zoomed-in portions of the low-frequency regions

III. PROPOSED APPROACH

In this work, the proposed generalized MoC model is
developed for two-conductor transmission lines where the
p.u.l. parameters are frequency independent and G(s) = 0.
To make the fitting scalable with the line length, the rational
approximation is performed on γ(s) − sT instead of Q(s).
The function γ(s)− sT is expressed as

P (s) = γ(s)− s
√
LC = s

√
LC

(√
L
Rs+ 1

L
Rs

− 1

)
(9)

where T =
√
LC. By setting

s′ = (L/R)s (10)

P (s) can be represented as

γ(s′)−R
√
C/Ls′ = R

√
C/Ls′

(√
(s′ + 1)/s′ − 1

)
. (11)

The function

X1(s
′) ≈ s′

(√
(s′ + 1)/s′ − 1

)
(12)

corresponds to a normalized function which is independent
of the p.u.l. parameters. Rational approximations using vector
fitting [7–9] for 5, 10, 15, and 20 poles are performed for
(12) offline and stored. Fig. 1 shows the accuracy of the fitted
response of X1(s

′) using vector fitting formulation with 5
poles and 20 poles. The 5-pole approximation is sufficient
to obtain the generalized shape of X1(s

′); however, there are
issues in the low-frequency range as shown in the zoomed-in
portion of Fig. 1 and can lead to inaccurate approximations
of Q(s) as the line length increases. Depending on the p.u.l.
parameters and line length, the appropriate order of the rational
approximation for X1(s

′) needs to be determined to ensure
accurate time domain results of the proposed MoC model. A
rational approximation of P (s) can now be obtained using
(12) as

P̂ (s) = R
√
(C/L)X1(Ls/R). (13)

To approximate Q(s), the Padé representation of e−s can
be utilized as

e−s ≈
∑M

i=0
(2M−i)!M !

(2M)!i!(M−i)! (−s)i∑N
i=0

(2N−i)!N !
(2N)!i!(N−i)! (s)

i
(14)

where M /N corresponds to the order of the Padé approxima-
tion. By replacing s with the rational approximation of P̂ (s)l,
an approximation of Q(s) is realized as

Q̂(s) =

∑M
i=0

(2M−i)!M !
(2M)!i!(M−i)! (−P̂ (s)l)i∑N

i=0
(2N−i)!N !

(2N)!i!(N−i)! (P̂ (s)l)i
(15)

The order of Q̂(s) is dependent on M/N and the order of
X1(s

′). These can be determined by ensuring that the absolute
difference, of both the real and imaginary parts, between the
accurate solution of Q(s) and its approximation, is within a
certain error tolerance for the frequency range of interest. The
Padé order M/N of the exponential is obtained using the
exact function P (s) and comparing the approximation with
the accurate solution of Q(s). The exact exponential of the
approximation of −P̂ (s)l is used to determine the order of
X1(s

′).
In order to obtain an analytic expression for Y0(s), (6) can

be rearranged and using (10) it can represented as

Y0(s
′) =

√
C/L

√
s′/(s′ + 1). (16)

Note that the normalized function

X2(s
′) ≈

√
s′/(s′ + 1) ≈ s′/(X1(s

′) + s′) (17)

is not dependent on the p.u.l. parameters and can be fitted
offline or determined using the approximation of X1(s

′) as
shown in (17). In this work, the rational approximation of
X1(s

′) that was used to determine Q̂(s) was also used to
obtain an approximation for Y0(s) since this resulted in
accurate frequency domain results of the Y-parameters of the
circuit. A rational approximation of Y0(s) can now be obtained
using (17) as

Ŷ0(s) =
√

(C/L)X2(Ls/R). (18)

The rational approximations of Ŷ0(s) and Q̂(s) can then
be implemented in HSPICE [10] to simulate the Norton
equivalent MoC model [5]. Note that with the rational co-
efficients of (12), (14), and (17), no additional curve fit-
ting is required. Future work will involve the extension of
the proposed algorithm to include frequency-dependent p.u.l.
resistance and inductance parameters as well as evaluating
the rational approximations to ensure passivity of the overall
circuit.

IV. NUMERICAL EXAMPLE

To illustrate the advantages of this approach, the proposed
algorithm is compared with HSPICE’s W-Element, HSPICE
with lumped resistive-inductive-capacitive (RLC) elements,
and performing IFFT on the frequency solution of the cir-
cuit. The rational approximations for the proposed model are
realized in MATLAB R2022a and implemented in HSPICE
(Version 2022.06-SP2-2) using Foster elements [10].

A cable with R = 60.3Ω/m, L = 211nH/m, C = 82.3pF/m,
a 50Ω driving resistor attached in series to the near end, and
a 1fF load capacitor attached to the far end is analyzed. A
linear piecewise ramped input source with a rise time of 0.1ns
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Fig. 2. Frequency response of the (a) real and (b) imaginary part of the
approximation Ŷ0(s) using 15 poles for X1(s′) compared with the accurate
frequency response Y0(s)
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Fig. 3. Frequency response of the (a) real and (b) imaginary part of the
approximation of Q̂(s) using 5 and 15 poles for X1(s′) compared with the
accurate Q(s) for a 10m line with zoomed-in sections

and an amplitude of 1V is attached in series with the driving
resistor.

By setting the threshold of the error criteria for both the
real and imaginary portions of Q(s) to 0.001 and fitting the
response up 10GHz, M/N = 1/3 for the exponential function
and 10 poles for X1(s

′) are required for a 1m line, while
M/N = 2/4 for the exponential function and 15 poles for
X1(s

′) are required for a 10m line. Fig. 2 and Fig. 3 show
the Ŷ0(s) and Q̂(s) rational approximations for the 10m line
compared to the exact frequency response. Fig. 3 shows that
for the 10m line, the 5-pole approximation of X1(s

′) was not
sufficient to satisfy the error criteria of Q̂(s) and 15-poles
were required.

Fig. 4 shows the far-end time domain voltage response
for line lengths of 1m and 10m for both W-Element and
the proposed methodology. For the 1m line, both W-Element
and the proposed methodology are in agreement. However,
as the line length increases to 10m, W-Element has difficulty
in modelling the frequency response of the transmission line
leading to inaccurate time domain solutions as shown in Fig.
4b. In Fig. 4b the lumped model, the proposed model, and
the solution using IFFT were in agreement. By determining
and verifying the accuracy of the coefficients of X1(s

′) and
X2(s

′) offline and selecting the appropriate order of M/N , the
proposed methodology can create the model analytically in a
manner which is less prone to numerical errors. As a result, the
proposed methodology provides a more accurate time domain
response than the W-Element for the 10m case. For the 10m
line, HSPICE’s W-Element, HSPICE with 50 lumped RLC
sections, and the proposed methodology required about 0.05,
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Fig. 4. Far-end voltage response for a line length of (a) 1m and (b) 10m
comparing HSPICE’s W-Element, the proposed MoC methodology, HSPICE
with 50 lumped elements, and IFFT

0.05, and 0.06 s, respectively.

V. CONCLUSION

In this paper, an approach for time domain modeling of
two-conductor transmission line structures with frequency-
independent p.u.l. parameters is developed to avoid fitting
each time the line length or p.u.l. parameters are altered. By
performing vector fitting offline, the accuracy of the rational
approximations can be verified and the MoC model is obtained
using predetermined rational coefficients, the p.u.l. parameters,
and the length of the line. This approach can provide more
accurate responses than HSPICE’s W-Element for challenging
line modelling problems such as lines with large resistive
losses and very long lines.
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