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Abstract — In this paper, an algorithm to combine the distinct 

advantages of knowledge-based training and transfer learning has 

been developed for the fast artificial neural network (ANN) 

assisted uncertainty quantification of on-chip multi-layered 

graphene nanoribbon (MLGNR) interconnect networks. In 

particular, the proposed algorithm enables different modes of 

information such as the values of the weights and bias terms and 

the predicted responses from a pre-trained secondary ANN to 

guide the highly data-efficient training of the primary ANN. The 

goal of the primary ANN is to develop a parametric model of the 

MLGNR interconnect responses that can be used in a Monte Carlo 

framework for fast uncertainty quantification.    

Keywords — Artificial neural networks (ANNs), high-speed 

interconnects, multi-layered graphene nanoribbons (MLGNRs), 

signal integrity, transfer learning, uncertainty quantification. 

I. INTRODUCTION 

Graphene-based interconnects such as multi-walled carbon 

nanotubes (MWCNTs) and multi-layer graphene nanoribbons 

(MLGNRs) are emerging as possible substitutes for 

conventional on-chip copper interconnects below 10-nm 

technology node [1]. Therefore, there is an urgent need to 

quantify the effects of fabrication process variations and 

manufacturing tolerances on the electrical performance of 

MWCNT/MLGNR interconnect networks in the early design 

cycles. Traditionally, the brute-force Monte Carlo method 

based on SPICE simulations of MWCNT/MLGNR 

interconnect networks was used for uncertainty quantification 

(UQ) [2]. However, the poor convergence of Monte Carlo 

coupled with the high computation time cost of a SPICE 

simulation of MWCNT/MLGNR interconnects make this 

method infeasible [3].    

Recently, machine learning techniques such as artificial 

neural networks (ANNs) have been used to emulate the 

responses of interconnect networks as analytic functions of the 

geometrical, material, and physical parameters of the network 

[4]. Once trained, these ANNs act as surrogate models that can 

be probed far more efficiently than repeated SPICE simulations 

of the network for UQ. Despite this basic computational 

advantage of ANNs, they require a massive amount of training 

data to reliably emulate the responses of interconnect networks. 

This training data is obtained from repeated SPICE simulations 

of the network – a task that will naturally incur massively high 

time costs when applied for MWCNT/MLGNR interconnects. 

 In order to mitigate the high training time cost of 

conventional ANNs for MWCNT/MLGNR interconnects, 

various knowledge based ANNs (KBANNs) have been reported 

in the literature [5]. These KBANNs crosscut the numerical 

efficiency of an approximate equivalent single conductor (ESC) 

model of MWCNT/MLGNR interconnects with the accuracy of 

a rigorous multi-conductor circuit (MCC) model of the same to 

enable significantly faster training of ANNs. More recently, a 

naïve transfer learning (TL) approach was also presented for 

MWCNT/MLGNR interconnects [6]. In the naïve TL approach, 

the values of the weights and bias terms obtained from training 

a cheap secondary ANN were transferred to the primary ANN 

to expedite its training where the objective of the primary ANN 

was to emulate the responses of the accurate MCC model of 

MWCNT/MLGNR interconnects. 

In this paper, the naïve TL approach of [6] is further 

improved by combining it with a known KBANN, specifically 

the prior knowledge input ANN (PKI-ANN) [5], [7]. In the 

proposed approach, when training the primary ANN, instead of 

simply transferring the values of the weights and bias terms 

from the secondary ANN to the primary ANN, the outputs of 

the secondary ANN are also taken in as new inputs to the 

primary ANN. The idea is to utilize the responses of the ESC 

model representation of the MLGNR interconnect networks 

predicted by the secondary ANN to further guide the training of 

the primary ANN above and beyond the benefits of naïve TL 

approach of [6]. Importantly, this work has developed an 

approach to initialize the values of the synaptic weights arising 

from the new inputs of the primary ANN (i.e., the outputs of 

the secondary ANN) such that these weights do not impede the 

training of the primary ANN but rather accelerate it. The 

proposed approach is referred to as PKI accelerated transfer 

learning (PKI-TL) approach and it is able to outperform the 

conventional PKI method and the naïve TL method of [6].  

II. PROPOSED PRIOR KNOWLEDGE ACCELERATED TRANSFER 

LEARNING APPROACH  

A. Problem Statement 

Consider an M conductor MLGNR interconnect network 

where each conductor consists of Nl graphene nanoribbons 



stacked vertically and separated by dielectric layers as shown in 

Fig. 1. This network is driven and loaded by inverters consisting 

of fin-shaped field effect transistors (FinFETs). The variability 

present in the parameters of the interconnect structure and the  

FinFET devices are mapped to N mutually uncorrelated random 

variables λ = [λ1, λ2,…, λN] located within the support Ω. Now, 

an ANN needs to be developed that can emulate the SI quantities 

of interest of the network of Fig. 1 as functions of the random 

variables λ as y(λ) = [y1(λ), y2(λ),…, yP(λ)].  

To train the ANN, a training dataset has to be extracted using 

repeated SPICE MCC model simulations of the MLGNR 

network of Fig. 1. Let this training dataset be expressed as {λ(k), 

yMCC(λ(k))}
1

tN
k =

where yMCC(λ(k)) is the SI quantities of interest 

evaluated from a SPICE MCC model simulation of the network 

at the k-th training sample λ(k) = [λ1
(k), λ2

(k), …, λN
(k)]. It is well 

known that developing a reliable ANN requires a massive 

number of training samples, Nt, where the time cost of even a 

solitary SPICE MCC simulation scale as ( )lO Nα and 3 4α≤ ≤

[3]. Thus, for MLGNR interconnects with even a few 

nanoribbons (i.e., a small Nl), the time cost to obtain the training 

dataset will be intractable. To address this problem, a PKI 

accelerated TL approach is proposed next. 

B. Proposed PKI-TL Approach: Training the Secondary ANN 

The first step of the proposed PKI-TL approach is to train an 

ANN that will emulate the target SI quantities of interest of the 

MLGNR network of Fig. 1 as a function of the random 

variables λ assuming an approximate ESC model representation 

of the network. This is referred to as the secondary ANN. The 

training dataset of this secondary ANN is {λ(k), yESC(λ(k))} 1

1
N
k =

 

where yESC(λ(k)) is the SI quantities of interest obtained from the 

SPICE ESC model simulation at the training point λ = λ(k). Let 

the SI quantities of interest predicted by the secondary ANN be 

z(λ) = [z1(λ), z2(λ),…, zP(λ)] where for a standard three-layer 

multi-perceptron architecture 
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In (1), σq,p refers to the q-th nonlinear activation function used 

in the neurons of the p-th layer, bq,p is the bias value entering 

the βth neuron of the p-th layer, and ,
,q pwα β is the synaptic weight 

linking the α-th neuron of the q-th layer to the  β-th neuron of 

the p-th layer. Next, all the weights and bias terms of (1) are 

optimized to minimize the error loss function  
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where w and b are weights and bias matrices in the secondary 

ANN. Note that the ESC model by virtue of compressing all Nl 

nanoribbons in a MLGNR conductor into a single nanoribbon 

ensures very fast SPICE simulation to generate the training 

dataset. Thus, the secondary ANN can be trained at very cheap 

time costs.  

C. Proposed PKI-TL Approach: Transfer of Knowledge    

The next step is to now train a primary ANN from the 

knowledge of the secondary ANN to emulate the target SI 

quantities of interest of the MLGNR network of Fig. 1 as a 

function of λ assuming the rigorous MCC model representation 

of the network. To that end, the following two conditions are 

proposed. 

(i) The primary ANN will possess the same architecture as the 

secondary ANN where the initial guess of the weights and bias 

terms will be inherited from the trained secondary ANN. This 

condition is true for the naïve TL approach of [6]. 

(ii) The primary ANN will take as additional inputs the outputs 

of the secondary ANN, z(λ). This is the new PKI condition 

proposed to ensure the faster convergence of the primary ANN 

than what is possible using only condition (i). 

A key challenge in imposing the PKI condition of (ii) is that 

the initial value of the weights of the synapses emanating from 

the new input neurons z(λ) of the primary ANN are unknown. 

These weights cannot be randomly initialized because then the 

initial prediction of the primary ANN may be vastly different 

from the prediction of the trained secondary ANN, thus 

TABLE I 
NORMALLLY DISTRIBUTED NETWORK PARAMETERS  

No. Parameter Mean 
Relative 

SD 

1 Conductor width (W) 10 nm 

±15% 

2 
Elevation of conductor above 

GND 
18 nm 

3 Conductor spacing 9 nm 

4 Dielectric constant (HfO2) 25 

5 Dielectric constant (SiO2) 3.9 

6 Fermi velocity (vF) 8×105 m/s 

7 Dielectric thickness (δ) 0.34 nm ±10% 

8 FinFET gate length  14 nm 

±10% 

9 FinFET oxide layer thickness 1.2 nm 

10 Fin pitch 28 nm 

11 Fin height 21 nm 

12 
Low field mobility of N-type 

FinFET (µ0,n) 
0.0568 
m2/V-s 

13 
Low field mobility of P-type 

FinFET (µ0,p) 
0.0376 
m2/V-s 

14 Fin width 8 nm 
 

 
Fig. 1: Circuit schematic of the MLGNR interconnect network with 
cross-sectional view of MLGNR conductors. 



preventing an intelligent starting point to the training of the 

primary ANN. To avoid this issue, in this work the synapses 

emanating from the new inputs z(λ) are initially set to zero as 

shown in Fig. 2. This ensures that the initial SI quantities 

predicted by the primary ANN is same as that predicted by the 

trained secondary ANN as in the naïve TL approach [6]. Hence, 

the advantage of the naïve TL approach is preserved. Moreover, 

after every training epoch, as the synaptic weights get updated, 

the impact of z(λ) will start to enter the hidden layer of the 

primary ANN and  further accelerate its training. Thus, the 

proposed PKI-TL approach reaps the benefits of both the 

conventional PKI-ANN [5], [7] and the naïve TL approach [6].  

III. NUMERICAL RESULTS AND DISCUSSIONS 

In this section, a five conductor MLGNR interconnect 

network as shown in Fig. 1 is considered. The parametric 

variability in the network is listed in Table I. Lines 1, 3 and 5 

are the active lines while lines 2 and 4 are quiet. The SI 

quantities of interest are the peak crosstalk (Vp) and the 

crosstalk delay (tcd) for the victim line 2. The statistics of these 

SI quantities are evaluated using Monte Carlo analysis with 

30,000 samples. The Monte Carlo analysis is performed using 

the following methods – the direct method using SPICE MCC 

model simulations, an ANN trained in the conventional sense, 

an ANN trained using the prior knowledge with source 

difference (PKID) approach because it is the fastest KBANN 

[5], an ANN trained using the naïve TL approach [6], and an 

ANN trained using the proposed PKI-TL approach. All ML 

techniques utilize the same training dataset of Nt = {100, 150, 

200, 300, 500, 800, 1000} Latin hypercube sampling points and 

a common testing dataset of 1000 points. All ANN models use 

a single hidden layer, hyperbolic tangent activation function, 

and the Levenberg-Marquardt optimizer. In Fig. 3, the decay of 

the testing error with the increasing number of training points 

for all the above ANNs is displayed. From Fig. 3, it is clear that 

the proposed PKI-TL approach requires the smallest number of 

training samples (150 MCC and 1000 ESC samples) compared 

to even the PKID and naïve TL ANNs (500 and 200 MCC 

samples respectively, each with a 1000 ESC samples to reach 

the same error threshold denoted by the black broken line). This 

corresponds to the proposed PKI-TL approach exhibiting the 

best speedup of roughly 6x over the conventional ANN, 1.3x 

over the naïve TL approach, and 3.3x over the PKID ANN 

during training. The accuracy of the proposed PKI-TL approach 

in predicting the full probability density function of the SI 

quantities of interest is illustrated in Fig. 4.  

IV. CONCLUSION 

In this work, a modified transfer learning approach that is 

accelerated with the prior knowledge input (PKI) formulation 

is proposed. This new PKI-TL approach is found to be far more 

data-efficient, and consequently, more time-efficient than 

conventional ANNs, the conventional PKID ANN, and the very 

recent naïve TL approach when training ANNs for the UQ of 

on-chip MLGNR interconnects.  
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                         (a)                                              (b) 

Fig. 4: PDF of (a) peak crosstalk at node N2 and (b) crosstalk delay 

at node N2 for 30,000 Monte Carlo samples. 

 
Fig. 2: Block diagram of the proposed PKI-TL approach. 
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Fig. 3: Decay of the RMS testing error with the increasing number 
of training points for different ANNs. (a) Peak crosstalk at node N2 
and (b) crosstalk delay at node N2. 

 


