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Abstract—As system performance increases, chip density and
power consumption also increase. Power integrity and thermal
management have become critical to the design flow and are
codependent on each other. Advanced simulation tools perform
co-simulation of electrical and thermal analysis on package-board
designs. This paper describes a novel way of using a class of
deep learning algorithms called conditional GANs (cGANs) to
efficiently model the power/thermal co-simulation task. As the
name suggests, cGANs are generative models that can predict
unseen simulation conditions. Using the ¢cGAN, the root-mean-
squared error on unseen test cases is 0.015 in a [-1,1] range,
translating to an error under 0.3 C°. Furthermore, a trained
network exhibits fast inference speeds, allowing for near real-
time generation of analysis results. This is a common goal of
digital twins for dynamic system performance tuning.

Index Terms—Power integrity, thermal analysis, digital twins,
GAN , multi-physics, co-simulation

I. INTRODUCTION

As computer system performance follows “Moore’s Law”
in doubling every 18 months, power distribution and ther-
mal analysis are no longer independent. A typical high-
performance system can comprise a printed circuit board
(PCB) and multiple high-power packages under a range of
ambient temperatures with limited airflow to cool it. Power is
dissipated inside the package on the die and in the PCB as
current flows through the copper power planes with electrical
resistance. The heat dissipates out of the system through
conduction, convection, and radiation. Since the electrical
resistance increases with temperature, physics increasingly
couples the power integrity and thermal response. As the
resistance increases, power dissipation increases resulting in
further temperature rises. The current state-of-the-art multi-
physics simulators, such as Cadence® PowerDC™, have an
iterative approach. The tools perform power and electrical sim-
ulations and feed the temperature solution back to recalculate
the electrical parameters. The electrical stimulation will be
restarted with new parameters until the power and thermal
solution reach equilibrium.

Fig. 1 shows an example where excessive power is drawn
through a backplane with highly perforated power planes; a
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Fig. 1: The backplane thermal hotspot (bottom) due to exces-
sive power drop (top).

local hot spot near the power connector (shown in white)
results in overheating and reliability concerns on the PCB.

With machine learning (ML) finding wide applications
across the industry, there has been a push to look at thermal
problems across the design flows. Chhabria et al. [1] show how
a U-Net [2], which comprises an encoder-decoder network,
converts a power map to a temperature map for a power
delivery network (PDN). In contrast, Jin et al. [3] propose
a generative adversarial network (GAN) to predict the thermal
performance of a commercial chip based on the chip’s per-
formance counter and extend the approach to predict transient
thermal maps. Stipsitz and Sanchis-Alepuz [4] performed a
study where they randomized placements for elements on a
PCB and predicted the thermal response given the power
consumption using convolutional neural networks (CNNs).
Lastly, Kashyap et al. [5] use cGANs to predict the heat map
for a layer in a 3D integrated chip (3DIC) given a fixed 3D
stackup with fixed power along one of the layers.

With these advancements in ML, there has been a push to
use generative models across different domains. Generative
models distinguish themselves from traditional discriminative
models in attempting to model the joint distribution of the
input and output. In contrast, a discriminative model tries
to model the conditional probability of the output given an
input. This work aims to model multi-physics power to thermal
problems using cGANSs, unlike prior work where they predict
electrical-to-electrical problems.
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Fig. 2: GAN architecture used for training. The generator is a U-Net that forwards information from the encoder to the decoder
to generate a heat map. The discriminator predicts whether the combination of the current density and heat maps are real.

The rest of the paper is organized as follows. Section II
consists of background information on cGANs and details the
proposed approach. Section III describes the data collection
and the result evaluation criteria. Section IV shows the exper-
imental results of a two-chip PCB design. Section V concludes
the articles and some discussion of future work.

II. CONDITIONAL GANS FOR THERMAL ANALYSIS

GANSs and their conditional variants, cGANSs, have tremen-
dous applications in numerous fields, especially in EDA [5].
GANs and cGANSs refer to two models, a generator and a
discriminator, that play a min-max optimization to generate
samples with underlying data properties. Looking specifically
at the cGAN, the two models it contains, the generator, G,
generates a sample, ¢, based on a random noise vector, z, and
some conditional parameter, x. The discriminator, D, then gets
either the generated sample, ¢, or the ground-truth sample, vy,
and determines whether the combination of § and x is real. To
that extent, Equation 1 shows the loss function for the cGAN.

LCGAN(Ga D) = Ex,y [IOg D(I|y)}
+E; - [log(1 = D(G(y, 2)|y))] -

The discriminator aims to maximize the function, whereas
the generator aims to minimize it. Furthermore, computing
the /1 loss between the generated and real image improves
the generator’s ability to generate realistic samples in paired
image-to-image translation tasks [6]. The addition of the ¢,
loss modifies Equation 1 as follows:

L = Legan(G, D) + M. )

where ) is a task-tuneable hyper-parameter.

In this work, the generator architecture is a U-Net, which
performs domain-to-domain translation for image tasks and
has found applications for integrated chip (IC) thermal pre-
diction [1], [5]. In this implementation, the generator takes
a current density map of the signal layer of the PCB as an
input. Then it passes it through an encoder which compresses
the input to a bottleneck phase. The generator’s decoder then
reconstructs the desired heat map using the bottleneck phase.

M

Unlike regular GANSs, this implementation implicitly adds
noise by using dropout layers in the decoder.

Fig. 2 shows the overall generator architecture with the
encoder, decoder, and bottleneck shown in yellow. Each layer
in the encoder contains a convolutional layer and layer nor-
malization, which reduces the input dimensions and prevents
a covariate shift. The output of each of the encoder layers
has a LeakyReLU activation. The decoder contains Convolu-
tionalTranspose layers that upsample from the bottleneck to
the desired resolution, with the first 3 decoder layers having
dropout. The final layer of the decoder has tanh activations to
ensure it can accurately recover the image in a [—1, 1] range.

The discriminator in this work is a CNN that outputs a
simple binary prediction to indicate whether the input is real.
The discriminator takes the conditional current density map
with either the ground truth or generated heat map. The
network is a series of encoder blocks that reduce the input’s
dimension with a flattened and fully connected layer with a
single unit at the output. To enable the training of the cGAN,
the loss function is binary cross entropy.

III. DATASET CREATION

Fig. 3 is the example problem using two high-power chips
(highlighted in red) on the PCB, drawing a high current. The
voltage regulator at the upper left corner supplies the current.
The high current concentrated near the regulator results in
a high-temperature rise. As a part of the data collection
process, we sweep randomly select the sink current between
20A to 40 A for one chip while keeping the sink current
on the other to 0.1 A, the minimum allowed in Cadence®
PowerDC™. The range for the selection is between 20 A to
40 A as currents above that yield an unrealistic temperature
range above 100 C°. Then we flip the currents on the chips
and capture the relevant heat maps. The collection process first
runs a purely electrical simulation to obtain the relevant current
density maps. Then it switches the workflow to an electrically
aware thermal simulation which takes 30 seconds per run. As
a part of this data collection, we collect 100 samples, of which
80 are for model training and validation, with the remaining



20 for testing the model. Fig. 2 shows a sample current density
map and the corresponding heat map where the first chip has
current and the second chip is off.

Before training the cGAN, preprocessing resizes the current
density and heat maps to 256 x 256. After scaling to the
resolution, it fills with the current density maps with zeros
in regions where items are present, such as vias. It then scales
min-max the current density and heat maps so that the ranges
are [—1,1].

Fig. 3: Reference PCB design for train/test cases.
IV. EXPERIMENTAL RESULTS

This section details the results of the cGAN on the pre-
viously unseen test set. Fig. 4 compares the ground truth
heat map to the cGAN generated. As evident from the figure,
the cGAN recovers the heat maps with high accuracy with a
root-mean-squared error (RMSE) on the test as 0.015, which
translates to 0.3 C°. Fig. 5b shows the distribution of the
RMSE over the entire test for each heat map. The RMSE
distribution ranges from [0.007,0.066] or [0.02, 1.8] C°, with
over 70% samples having an error less the 0.01. Furthermore,
in regions with no electrical components, the cGAN recovers
the correct ambient temperature, and the locations of the
hotspots are also highly accurate.
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Fig. 4: Result from the test set

On further investigation of the bottleneck phase of the
generator, we see that it can separate the different condi-
tions. Fig. 5a uses principal componenet analysis to represent
the high-dimensional latent space in 2 dimensions. The red and
green correspond to chip 1 and chip 2 being on, respectively.
It is clear from the figure that the cGAN can determine the
different sink currents applied to each chip and use that to
generate a heat map.

One of the more essential aspects of using ML models is
their fast inference. In this work, the cGAN takes an average of
100 ms to predict the test cases. Moreover, the cGAN does not

Principal Component Analysis of Latent Space Distribution of Errors Across Test Set for RMSE
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Fig. 5: Results on the latent space (left) and RMSE over all
test case (right).

require significant training time, with the model taking under
20 minutes to train. The reported training/inference times are
on an Nvidia® 2080-TT GPU.

V. CONCLUSION

This paper demonstrates the flexibility of using cGANs to
model complex multi-physics problems. The trained cGAN
can provide near real-time prediction of the hot spot tempera-
ture given the ambient temperature and chip power load. Fan
speed can be dynamically adjusted to maintain the necessary
temperature to ensure component reliability at the hot spot.
Even though the sample problem is a relatively simple case,
the cGAN can be extended to a larger number of chips
and multiple hotspots or 3D packaging. There is substantial
computation headroom to train and perform inference on much
more complex problems. We will continue to investigate these
applications, especially in 3D packaging for chiplets.
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