
Batch Training of Gaussian Process for
Up-sampling Problems in S-Parameter Predictions

Yiliang Guo∗, Xingchen Li∗, Yifan Wang∗, Rahul Kumar†, Madhavan Swaminathan†
∗Georgia Institute of Technology, Atlanta, GA 30332, USA, {yguo379, xingchen.li, ywang3184}@gatech.edu

† Pennsylvania State University, State College, PA 16801, USA, {fkumar7, mvs7249}@psu.edu

Abstract—In using Machine Learning (ML) methods to predict
S-parameters, handling the dimensionality problem of map-
ping the low-dimension design parameters to high-dimension
responses is important. We propose to use batch training of
Gaussian Process (GP) to map the design parameters into latent
Gaussian space instead of linear mappings to create the non-
linearity property as well as avoiding the saturation of activation
functions before applying transposed kernels. Results show that
the proposed model achieves better performance with regard to
loss and normalized mean-squared error.

Index Terms—microvia interconnection, convolutional neural
network, Gaussian process

I. INTRODUCTION

Applying Machine Learning method to predict the target S-
parameters has gained more and more attention, it not only
achieves high accuracy but also reduces the computational
resources as well as the time consumption. Previously, Spectral
Transposed Convolution Neural Network (S-TCNN) [1] with
1D kernel and 2D kernel [2] have been proposed to solve the
unbalanced dimensionality problem between low-dimension
design parameters and high-dimension S-parameter matrix. It
utilizes linear layers to map the design parameters into linear
latent space for data preparation as the first step, after that
the 1D or 2D transposed convolutional kernels are used to
up-sample the data into desired dimension. However, during
this training process two issues would happen, namely the
1)linearity problem and 2) saturation of activation functions.
Linear layers apply linear transformations to the design param-
eters such that the output of linear layers could be reshaped
as the input of transposed kernels. Due to the linear properties
of linear layers, all the nonlinear patterns are assigned to
the transposed kernel layers, which limits the performance
of up-sampling. In transposed convolutional layers, non-linear
activation functions faces the saturation problem, which is
illustrated in Fig. 1. The inputs of x1 and x2 are distinguish-
able, however the difference between outputs of the activation
function become negligible. It also results in the gradient
vanishing problem, which increases the training iterations and
shrinks the effective region of the neural network.

At its core, a Gaussian process defines a prior distribution
over functions, where each function is a mapping from an
input space to an output space. It assumes that any finite set
of points from this function follows a multivariate Gaussian
distribution. In other words, the Gaussian process defines a
distribution over functions, rather than a distribution over
parameters as in other models. When training a Gaussian

Fig. 1. The Saturation and gradient vanishing problems of Sigmoid and Tanh
functions

process model, the prior distribution over functions is updated
based on the observed data to obtain the posterior distribution.
This posterior distribution is used to make predictions or infer
the underlying function values at new, unseen points.

In this paper, we propose to map each design parameter into
its Gaussian latent space instead of using linear mappings to
improve the performance of neural network.

II. TECHNICAL APPROACHES

A. Spectral Transposed Convolution Neural Network

In order to map data from lower dimensional feature space
to higher dimensional input space, transposed convolution
operation could be applied. In Toeplitz form, the output y
given input x and kernel function h can be written as:

y = f(h ∗T x) = f(HTx) (1)

with

y =

y1
y2
...
yn

 ,H =

w1w2 · · · wk 0 · · · 0

0 w1 w2 · · ·wk
. . .

...
...

. 0
0 · · · 0 w1w2 · · ·wk

 ,x =

x1

x2

...
xm

 (2)

where ∗T is the transposed convolution operation and y is the
upsampled output of size m = n + k − 1. In this paper, we
select 2D transposed convolutional kernel for the NN model.
Mathematically, the 2D kernel is written as:

y[m,n] = x[m,n] ∗ h[m,n] =
∞∑

j=−∞

∞∑
i=−∞

x[i, j]h[m− i, n− j] (3)

where x and y are input and output functions and h is the
kernel function. The general structure of S-TCNN with 2D
kernel is illustrated in Fig. 2. Fully connected linear layers

979-8-3503-1798-5/23/$31.00 ©2023 IEEE

Fig. 2. General S-TCNN Structure

(FCNN) are used to up-sample the input data as the initial step.
After that, the outputs from previous layer are unflattened to
add extra dimensions in order to fit batches of 2D transposed
convolutional filters. The matrix will be flattened and expanded
along frequency axis to serve as the output of S-parameter
predictions.

B. Gaussian Process

Gaussian Process (GP) is regarded as the extension of
standard multivariate Gaussian distribution to infinitely many
variables, where any finite number of samples form a joint
Gaussian distribution. A standard GP can be written as:

y = f(x) ∼ N (µ(X),KX) (4)

In most cases, a constant mean is used as µ(x) = m. The
kernel function K(x) that describes the relation between
points in the function is written as:

K(x) =

 k (x1,x1) . . . k (x1,xt)
...

. . .
...

k (xt,x1) . . . k (xt,xt)

 (5)

Kernel functions are designed to capture specific patterns,
which is the key of GP. The details of various kernels are
described in [3]. The hyperparameters in kernel functions are
updated during the training process by minimizing the negative
log marginal likelihood of the GP. Once the GP model is
trained using the dataset D = {X,Y }, it can be used to
predict the unknown response y∗ for a new set of input data
x∗ ∈ RM×D using the relationship:

p(y∗, Y |x∗, X, θ) = N
([

µX
µx∗

]
,

[
KX KX,x∗

KT
X,x∗ Kx∗,x∗

])
(6)

where θ is the set of hyperparameters used as part of the
training process [4].

III. MODEL SETUP

A. Staggered Via Setup

Consider the staggered via model described in [2], [5].
The via is modeled using Ansys HFSS as shown in Fig.3.
The model incorporates an embedded co-planar waveguide
(CPW) chip inside a glass cavity and two copper RDL layers
(M1 and M2) plated on ABF, a polymer dielectric, laminated
above the glass core. To tune the performance of the staggered
via structure in terms of s-parameters, there are ten trainable
parameters that can be optimized as shown in the second
subplot of Fig.3 (b). Ranges of these parameters are listed in

Fig. 3. Modeling and size of a staggered via.(a) Overview of the model. (b)
Sizes of the structure.

TABLE I. We generated 600 groups of datasets by sampling
each of the parameters independently though Latin hypercube
sampling (LHS) method, among which 480 groups are used
for training and the rest 120 groups are reserved for testing.
The frequency range of s-parameter is DC to 170 GHz with
0.1 GHz steps, which corresponds to 1690 points.

TABLE I
CHARACTERIZATION PARAMETERS (µm)

Parameters Min Max Parameters Min Max
Gstub 20 60 lost 30 80
lms 500 700 Wcpw 45 65
Wgnd 300 700 Gcpw 20 80
Wstub 60 120 Gfill 30 60
lstub 80 200 Wms 70 200

B. Network Structure

Prior to input the data into neural network, we normalize
the training set by subtracting the mean and then divided by
the standard deviation. Instead of utilizing sequential fully-
connected linear layers, we create N batches of Gaussian
process layers where each layer takes the input design param-
eters and map them into latent Gaussian space, as depicted
in Fig. 4. After that, 2D transposed convolutional layers
with tanh activation function are applied to map the data
from latent Gaussian space to frequency space in order to
capture the response patterns. The data is reshaped into the
forms of [batches, channels, rows, columns], where channels
determined by the number of Gaussian process layers in the
precious stage. The data is then flattened and a CoordConv
layer [6] is utilized to maintain the frequency axis information.

Fig. 4. NN structure

Fig. 5. Distributions of mapping input design parameters to linear space and Gaussian space

The machine learning model is built on PyTorch using CUDA
to accelerate the training process. The Gaussian process is built
upon Gpytorch.

IV. RESULTS

Once the model is trained, we applied both the proposed S-
TCNN with 6 GP layers of RBF kernels and the S-TCNN
with 6 traditional FCNN layers to the testing set. Results
of transformations of the input design parameters after being
centered to (0, 0) are shown in Fig. 5, where Parameter 1-
6 stand for the normalized outputs of FCNN or GP layers.
As we can see, the outputs of GP layers are more centered
to 0 compared with the FCNN layers, which means that the
model has a higher probability of working on the effective
regions of sigmoid and tanh activation functions. The outputs
of FCNN layers, instead, have more dispersive distributions,
where a large amount of the points will locate in the saturation
region. The final losses for S-TCNN with FCNN layers and
the proposed model are 0.311 and 0.276. The validation
normalized mean-squared error (NMSE) for the two models
are 0.022 and 0.019, respectively. An example of predictions
of S11 and S21 in testing set are shown in Fig. 6, where
the predictions of the proposed model are more smooth and
achieves better accuracy compared with the original model.

V. CONCLUSION

In this paper, we propose to utilize GP layers to map
the input design parameters of the model to latent Gaussian
space to overcome the common gradient vanishing problem in
machine learning. Compared with linear transformations, the
outputs of GP layers will be more concentrated around the
region where the activation functions have larger derivatives.
In the staggered via application, the final loss reduces from
0.311 to 0.276 and the NMSE reduces from 0.022 to 0.019
compared with S-TCNN with FCNN layers.

Fig. 6. Prediction results. (a) S-TCNN with linear layers. (b) S-TCNN with
GP layers

ACKNOWLEDGMENT

This work was supported by DARPA under the Warden
program (Project Number GR00013386).

REFERENCES

[1] H. M. Torun, H. Yu, N. Dasari, V. C. K. Chekuri, A. Singh, J. Kim, S. K.
Lim, S. Mukhopadhyay, and M. Swaminathan, “A spectral convolutional
net for co-optimization of integrated voltage regulators and embedded
inductors,” in 2019 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pp. 1–8, IEEE, 2019.

[2] Y. Guo, X. Li, and M. Swaminathan, “2d spectral transposed con-
volutional neural network for s-parameter predictions,” in 2022 IEEE
31st Conference on Electrical Performance of Electronic Packaging and
Systems (EPEPS), pp. 1–3, 2022.

[3] D. Duvenaud, Automatic model construction with Gaussian processes.
PhD thesis, University of Cambridge, 2014.

[4] M. Swaminathan, O. W. Bhatti, Y. Guo, E. Huang, and O. Akinwande,
“Bayesian learning for uncertainty quantification, optimization, and in-
verse design,” IEEE Transactions on Microwave Theory and Techniques,
vol. 70, no. 11, pp. 4620–4634, 2022.

[5] X. Jia, X. Li, S. Erdogan, K.-S. Moon, J. W. Kim, K.-Q. Huang,
M. B. Jordan, and M. Swaminathan, “Antenna with embedded die in
glass interposer for 6g wireless applications,” IEEE Transactions on
Components, Packaging and Manufacturing Technology, vol. 13, no. 2,
pp. 219–229, 2023.

[6] R. Liu, J. Lehman, P. Molino, F. Petroski Such, E. Frank, A. Sergeev,
and J. Yosinski, “An intriguing failing of convolutional neural networks
and the coordconv solution,” Advances in neural information processing
systems, vol. 31, 2018.

