
Machine-Learning-Based Constrained Optimization
of a Test Coupon Launch Using Inverse Modeling

Andrew Page, Xu Chen
Department of Electrical and Computer Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61820, USA

andrew.page@ieee.org, xuchen1@illinois.edu

Abstract—This paper demonstrates the forward modeling and
inverse design of a test coupon launch structure used in the
board measurement practice known as the delta-L method. An
inverse model is trained to synthesize a launch design to exhibit a
desired electrical performance and to be physically realizable. A
forward model is constructed and used to evaluate the electrical
performance of the designs synthesized by the inverse model
during training. The training of this inverse model is treated as
a convex optimization with constraints on the synthesized designs.
These constraints inspire a novel implementation of constraint
loss by a pair of everywhere-differentiable barrier functions.
The finished inverse model is applied to a swift multi-criteria
design optimization and the forward model is used to perform
uncertainty analysis about the synthesized design. Considerations
for further applications and improvement of the procedure are
discussed.

Index Terms—neural network, forward/inverse model, delta-L
method, convex optimization, barrier function

I. INTRODUCTION

A test coupon is a simple interconnect built on the margins
of a printed circuit board (PCB) to characterize the capability
of the board while avoiding intensive full-board measurement.
Knowledge of the embedded channel behavior allows material
and cross-section characterization to be unaffected by any
other structures including pads and vias. A measurement of
a test coupon interconnect will include such launch structures,
obscuring the desired embedded channel characteristics.

Techniques exist to calibrate out the effects of launch
structures, an example being automatic fixture removal. Such a
technique requires proprietary software and the results can be
sensitive to measurement error. The delta-L method is a simple
alternative that requires two measurements and no proprietary
software [1]. These measurements have been automated for
large batches and an example launch has been optimized in
the literature [2], [3]. Delta-L provides less detail than a full
calibration but is often sufficient for estimating loss.

The delta-L method relies on low discontinuity presented by
the via-and-pad launch [3]. A dogbone via pair, a commonly
used structure, will be optimized for minimal discontinuity at
four frequencies chosen to mimic the existing literature [3]:
10, 20, 30, and 40GHz. This will be done by way of a tandem
forward- and inverse-model method. A forward model is a
machine learning model trained to predict the performance of
a design, mimicking and replacing electromagnetic simulation.
An inverse model is one that synthesizes a design to meet a
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prescribed electrical performance. Training an inverse model
is significantly more challenging as the synthesized designs
must obey constraints imposed by geometric limitations and
signal integrity (SI) rules.

Section II will discuss the training of the forward model
along with the developments necessary for the inverse model
to synthesize within design constraints. Section III will demon-
strate the use of these models to optimize a dogbone via pair
over a 7-dimensional design space and perform uncertainty
analysis about an optimized design. Concluding remarks and
potential improvements are offered in section IV.

II. TRAINING THE FORWARD AND INVERSE MODELS

A. Forward model — predicting design performance
A launch structure can be electrically characterized with

full-wave simulation, done here with Ansys HFSS. The up-
coming inverse model training will require many such evalu-
ations, rendering HFSS prohibitively slow. A forward model,
implemented as a two-layer fully-connected neural network,
will serve as a replacement. This model will map seven design
parameters ξ⃗ = (rvia, rpad, rap, pvia, pgnd, lstub, θ)

T into the
board-side differential-mode reflection coefficient magnitude

FM(ξ⃗i) = |S̄dd11(ξ⃗i, fj)| =: |S̄|i ∈ R4, (1)

where fj = {10, 20, 30, 40}GHz. A design includes the via,
pad and anti-pad radii, ground and signal pitches, stub length
and launch angle. The model is trained with HFSS simulations
of vias sampled over the design space using latin hypercube
sampling to minimize prediction loss L, a mean-square error
between training data {|S|i} and network predictions

{
|S̄|i

}
:

L({|S|i, |S̄|i}) =
〈(

|S|i − ¯|S|i
)2〉

i
. (2)

B. Inverse model — coupled training for constrained design
The inverse model must synthesize designs to exude speci-

fied electrical characteristics while abiding by constraints. It is
trained with a newly generated parameter set {ξ⃗i} with perfor-
mances {|S|i} predicted using the forward model. A design ¯⃗

ξ
is synthesized by the inverse model to meet performance |S|:

IM(|S|) =:
¯⃗
ξ =⇒ FM

(
¯⃗
ξ
)
=: |S̄| ≈ |S|. (3)

The performance of the inverse model is quantified both by
its ability to produce a proper design, |S̄| ≈ |S|, and the
compliance of this design with all provided constraints:

L̃
({

|S|, |S̄|, ¯⃗ξ
})

= L̃1({|S|, |S̄|}) + λL̃2

({
¯⃗
ξ
})

. (4)



TABLE I
PARAMETER RANGES FOR FORWARD MODEL DATA GENERATION

Parameter rvia rpad rap pvia pgnd lstub θ
Min. (mm, ◦) 0.2 0.3 0.4 1.0 3.0 0.1 30
Max. (mm, ◦) 0.4 0.5 0.6 1.2 3.2 0.3 60

Loss L̃1 is a mean-square error between electrical perfor-
mances as in (2). Loss L̃2 quantifies how far a synthesized
design is from obeying all constraints, which will require care
to implement. Weight λ balances the losses during training.

Such constraints will be separated into two categories in
this work: interval and mutual. The former is the constraint
that each parameter of a synthesized design must lie within
its allowed range, specified for this problem in Table I.
This restriction may represent manufacturing limitations or SI
rules. The latter represents geometric relationships between
parameters that must be upheld to avoid faulty designs, an
example being a required margin between the pad and anti-
pad radii rpad and rap. There are four such constraints present:

c1 := (rvia + 0.05mm)− rpad ≤ 0,

c2 := (rpad + 0.05mm)− rap ≤ 0,

c3 := (2rpad + 0.2mm)− pvia ≤ 0,

c4 := (pvia + 2rap + 2rpad)− pgnd ≤ 0.

(5)

A cursory approach to implement these is to punish a faulty
design with high loss and reward otherwise with low loss
by use of an indicator function. Such an approach fails in
practice due to this loss not being differentiable [4]. This will
be amended by approximating the indicator function smoothly,
referred to here as a barrier function.

A barrier function should reward acceptable designs while
exhibiting high gradient outside spec to encourage network
optimization. It should be relatively flat within spec so as to not
bias admissible designs. This work introduces the exponential
and [−1, 0]-bucket barrier functions and their gradients:

Î−,exp(u) = etu/t =⇒ ∇Î−,exp = etu∇u.

Î[−1,0](u) =
etu + e−t(u+1) − 2e−t/2

t

=⇒ ∇Î[−1,0] =
(
etu − e−t(u+1)

)
∇u.

(6)

These two functions, shown in Fig. 1, indicate whether ar-
gument u is within range. The exponential barrier rewards
u < 0, intended for use with the mutual constraints (5). The
bucket barrier rewards u ∈ [−1, 0], to be used with interval
constraints. Each barrier has a stiffness parameter t; higher
stiffness accentuates the barrier properties, though this may
introduce instabilities in training. The peculiar arrangement
of (5) now becomes clear; each ck can be fed directly into
Î−,exp. The interval constraints are normalized to regularize
units before evaluation against the bucket barrier:

ξ̄k ∈ [a, b] 7→ ck+4 =
ξ̄k − b

b− a
∈ [−1, 0]. (7)

Fig. 1. Exponential and bucket barriers for t = 1, 2, 10, with indicators I .

Normalization is unnecessary for the mutual constraints in this
problem as each is of similar order. The barriers are summed
and averaged over a training batch to produce L̃2:

L̃2

({
¯⃗
ξi

})
=

〈
4∑

k=1

Î−,exp (ck,i) +

11∑
k=5

Î[−1,0] (ck,i)

〉
i

. (8)

Here, ck,i is the kth condition of the ith design. The barriers
depend implicitly on t, which should be chosen in combination
with λ to ensure the final model exhibits both matching and
constraint adherence. A rule of thumb is to make sure that the
worst-case acceptable λL̃2 is of the same order of magnitude
as the desired L̃1 so that constraint adherence is trained for
first, fine-tuning for prediction accuracy afterwards.

III. NUMERICAL RESULTS

A. Forward- and inverse-model training

The process outlined in Section II was carried out to form
forward and inverse models representing a differential launch
shown in Fig. 2 with a design space summarized by Table I
and (5). The substrate is based on low-loss Doosan DS7409DV
with ϵr = 3.25 and tan δ = 0.004 [3]. The forward model
training was done with 2,000 samples and tested against an-
other 1,000, resulting in {0.045, 0.144, 0.065, 0.111}dB RMS
loss at each frequency. Similar results were attained with less
data, but this was chosen to maximize accuracy.

The inverse model was trained repeatedly to balance λ and
t for this problem. Each model is used to synthesize 2,000
designs from a simulated dataset; a violation is counted if any
constraint is disobeyed. L̃1 is measured between the true data
and the forward model of the synthesized design. Fig. 3 sum-
marizes this experiment, demonstrating the trade-off between
the two goals; too much emphasis on L̃2 worsens L̃1, and

Fig. 2. Side profile of backdrilled symmetric differential via pair.



Fig. 3. Inverse models trained varying (λ, t), tested against 2,000 simulations.

vice versa. The best trained models for each combination are
used to show their capability. The chosen model is indicated
at λ = 10−3 and t = 2. Runs with t > 4 tended to never
converge; this may be due in part to the random network
initialization providing designs initially far out of spec which
contribute massive L̃2 with extreme gradients.

B. Design optimization

The inverse model will be applied to optimize the design
by minimizing a weighted combination of its S-parameters:

minimize w⃗ · |S̄|. (9)

The weights w⃗ = (w1, w2, w3, w4)
T can be chosen to empha-

size desired behaviors analogous to the spectra of transient
signals incident on the via pair; w⃗1 = (1, 1, 1, 1)T will weight
each frequency equally while w⃗3 =

(
1, 1, 1

4 ,
1
4

)T
emphasizes

low frequency. Vector w⃗2 =
(
1, 1

2 ,
1
3 ,

1
4

)T
resembles the

inverse-frequency envelope of a square wave spectrum.
This optimization starts with a known design and its elec-

trical performance, then randomly sampling thousands of im-
proved S-parameter vectors. The inverse model will synthesize
the design of each, discarding any non-physical design. It is
important to sample many combinations of |S̄|, as not all
combinations are achievable within the design space. The
realizable design satisfying (9) for given w⃗ is chosen. Fig.
4 shows an optimal performance and accompanying design
for each weight w⃗i; the bounding bars show independent
performance ranges at each frequency. From the design trends
we gather that smaller via features improve performance,
and that there is potentially an impedance mismatch due to
undersized via pitches. Design-based criteria including fixing
parameters may be added into such an optimization with ease.

C. Performance uncertainty analysis

A benefit of the surrogate model approach to design opti-
mization is the potential to perform sensitivity or uncertainty
analysis of the optimized design for little extra cost. This was
done for the equal-frequency optimized design produced by
the previous section by modeling the variables as uniformly
random with a 5% tolerance. The resulting S-parameter spread
is shown in Fig. 5. The spread is relatively low at 10 and
30GHz, while wide variations at 20 and 40GHz may indicate
resonances near the optimal design.

Fig. 4. Optimal performances and synthesized physical designs for each w⃗i.

Fig. 5. S-parameter distributions about design optimized for equal frequency
weighting, calculated with trained forward model.

IV. CONCLUSION

The presented tandem forward- and inverse-modeling
scheme is capable of synthesizing test coupon launch designs
that exude prescribed performance and obey constraints im-
posed by manufacturing or physical limitations. Careful choice
of weight and stiffness parameters λ and t allows acceptable
model training. The resulting inverse model can be used for
swift multi-purpose design optimization. The forward model
can perform uncertainty analysis around a design for little cost,
a capability not possessed by an optimization based only on
full-wave simulation. Further work may include implementing
a wider design space for a multi-purpose inverse model.
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