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Abstract— In this paper, we propose an adaptive Gramian-
Angular-Field segmentation integration (AGSI) based generative 
adversarial networks (GANs) for eye diagram estimation, which is 
a novel approach in high bandwidth memory (HBM) interposer 
design. The proposed AGSI framework effectively integrated 
relevant signal integrity (SI) components, namely single bit 
response (SBR) and far-end crosstalk (FEXT). AGSI allows for a 
customized and accurate representation of various design 
scenarios. By employing GAN-based estimator with AGSI as input 
data, the model significantly improved the time efficiency and 
accuracy of eye diagram estimation. This novel approach has 
potential applications in other domains, including signal 
integrity/power integrity (SI/PI) co-simulation, and is expected to 
enhance the design process in terms of time cost for HBM 
interposers and beyond. 

Index Terms—Adaptive Gramian-Angular-Field segmentation 
integration, eye diagram estimation, generative adversarial 
networks, high bandwidth memory 

I. INTRODUCTION 
 The growing demand for fast and powerful computing 
devices has led to the development of high bandwidth memory 
(HBM). HBM interposer design has become increasingly 
important due to the dense and compact channel routing resulting 
from the large number of input/outputs (I/Os) and data rate, 
which cause signal degradation [1]. Signal integrity (SI) 
challenges, such as channel loss, crosstalk, and inter-symbol 
interference (ISI), arise in HBM interposer, emphasizing the 
importance of maintaining signal quality despite design 
constraints. Therefore, designing a high-speed memory channel 
in the HBM interposer requires a comprehensive analysis of SI, 
including eye diagram analysis.  
 Since the process of eye diagram simulation is time-
consuming, eye diagram estimation methods play a crucial role 
in reducing the time cost of the design process. Conventionally, 
peak distortion analysis (PDA) based method has been used to 
obtain the worst eye contour [2]. Nowadays, machine-learning 
based methods have emerged as a promising approach to further 
improve the time efficiency of the estimation [3]. However, 
these methods have faced limitations in generating complete eye 
diagrams. While it is possible to analyze performance by 
estimating key parameters of eye diagrams, understanding the 
specific SI element that require the improvement is not feasible. 
To address this issue, a generative adversarial networks (GANs) 

based eye diagram estimation has emerged as a promising 
alternative [4]. GANs, as generative models, can create 
complete eye diagrams, distinguishing them from conventional 
eye diagram estimation methodologies. 
 The previous work employs the Gramian Angular Sum Field 
(GASF) as an input condition for GAN to capture ISI by 
transforming time-series data into images [4]. This method, 
which utilizes GASF as a condition, facilitates the generation of 
relevant eye diagrams. GASF is widely employed in computer 
vision approaches for processing, analyzing, and classifying 
tasks. By examining the trigonometric sum between each point 
of time-series data, it becomes easier to discern the temporal 
correlation across various time intervals [5]. However, the key 
limitation is its inability to process multiple datasets 
concurrently, restricting its usage in scenarios requiring 
comprehensive time-series analysis. 
 Therefore, in this paper, we propose the GAN-based eye 
diagram estimation method with the adaptive Gramian-Angular-
Field segmentation integration (AGSI) framework. Fig. 1 
highlights the usage of the AGSI framework as input in the 
generator for eye diagram estimation, emphasizing its role in the 
process. By adaptively extracting critical engineering factors 
from input data, our approach facilitated the integration of 
diverse information types. We demonstrated that the 
implementation of the proposed method in the HBM interposer 
design can effectively handle signals with multiple features. 
This technique offered improvements in efficiency and had the 
potential to benefit various applications, addressing limitations 
in existing eye diagram estimators.  

II. PROPOSAL OF THE ADAPTIVE GRAMIAN-ANGULAR-FIELD 
SEGMENTATION INTEGRATION (AGSI) FRAMEWORK 

In this section, GAN-based eye diagram estimator model is 
proposed. The estimator model applied the proposed AGSI 

 
Fig. 1. AGSI based eye diagram estimation through a U-Net based generator. 
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framework with segmentation integration of SI components as 
the estimator’s input and performs an image-to-image 
translation using a conditional GAN (cGAN).  

A. AGSI with modular SI/PI components 
We propose the AGSI framework, an effective method for 

encoding multiple data into one image, which facilitates the 
integration of diverse information sources in a unified 
representation. This approach allowed for the application of 
GANs for accurate estimation in a wide array of domains and 
disciplines, by adaptively extracting essential engineering 
factors from the input data. In this paper, our AGSI framework, 
as shown in Fig. 2(a), was designed with the ability to 
accommodate both modular SI and power integrity (PI) 
components. These modular components can be freely chosen 
and configured, allowing for adjustments in the sequence and 
size according to the design importance of each component. We 
defined the AGSI by modifying GASF as: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
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Each 𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑗𝑗 (i = 1, 2, …, m, j = 1, 2, …, n) represents the 
encoded values of the i-th step in module 1 data and the j-th step 
in module 2 data, respectively. The configuration of modules 
and sizes, limited by the processed image's pixel size, affects 
the AGSI given as a condition. As AGSI can encapsulate 
extensive data, this approach facilitates the generation of 
accurate and deterministic results. 

In this article, HBM interposer design took into account the 
considerable variation depending on the channel loss and the 
significant impact of crosstalk between neighboring channels. 
Therefore, single bit response (SBR) and far-end crosstalk 
(FEXT) were selected as the target module 1 and 2, respectively. 
This was followed by a segmentation integration procedure as 
depicted in Fig. 2(b). In the process, feature scaling techniques 
were employed to normalize data, ensuring the uniform 
representation of various features. This allowed for an effective 
merging of the modules into a unified dataset by rescaling and 
resampling data. 

The proposed methodology employs the use of GASF in the 
process of representing difficult-to-understand signals with 
multiple features as images, rather than utilizing simply 
processed signal values through a network. This approach 
diverged from conventional applications of GASF, anticipating 
that signals from other domains, such as frequency-domain data, 
could also be utilized as feature-inclusive indicators through 
appropriate configuration.  

B. Image-to-image translation with a conditional GAN 
GANs consist of two primary components: a generator G, 

which aims to synthesize realistic data samples, and a 
discriminator D, which aims to distinguish between real and 
generated samples. GAN models learn to map from a random 
noise vector z to an output image y. However, cGANs extend 
this concept by learning mappings from both an input x and a 
random noise vector z to an output image y [6]. The cGAN’s 
objective function can be denoted as:  

ℒ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(G, D) = 𝔼𝔼𝑥𝑥,𝑦𝑦[logD(𝑥𝑥,𝑦𝑦)] 
+𝔼𝔼𝑥𝑥,𝑧𝑧[log (1 − D(𝑥𝑥,G(𝑥𝑥, 𝑧𝑧)))] 

(2) 

This allows cGANs to generate images based on specific 
conditions or inputs, providing more control over the generated 
output compared to traditional GANs. In image-to-image 
translation using cGANs, employing a conditional image x as 
input, instead of random noise z, results in generating 
deterministic outcomes rather than stochastic ones [6]. We 
leveraged this aspect, and trained the GAN as an estimator for 
eye diagrams, where accuracy of the generated output is crucial. 
This approach efficiently utilized the deterministic nature of the 
output for practical applications in eye diagram estimation. 

For the generator, a U-Net based generator could effectively 
utilize the features of AGSI to generate eye diagrams. 
Furthermore, to enhance the generated quality, PatchGAN 
discriminator was utilized to allow for the preservation of high-
frequency information, while the addition of an L1 loss ensures 
the accurate capture of low-frequency details [6]. Consequently, 
this balanced distribution of roles enabled the design of a 
precise estimator to be implemented.  

III. DATA GENERATION AND PREPROCESSING 
For this work, we assumed the design space to be a stripline 

channel structure, as illustrated in Fig. 3. By modifying its 
physical dimensions, a dataset was generated for training 
purposes through ADS SPICE simulation tool. Assuming a 
progressive increase in the data rate for the next HBM2e, the 
data rate was set at 4.8 Gb/s. To ensure noticeable differences 
in the training dataset, the width, space, and dielectric height 
(W, S, H) of the channel, were set to have a step size of 0.2 µm 
and ranges of 1-3 µm, 1-3 µm, and 1-1.4 µm, respectively. The 
eye diagram simulation was set referring to JEDEC standard [7]. 

 
(a) 

 
(b) 

Fig. 2. (a) AGSI design using modular SI/PI components. (b) Segmentation 
integration of SBR and FEXT as modular SI components. 
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Fig. 3. HBM interposer stripline channel structure and the design parameters for 
the training dataset with variations in physical dimensions (W, S, H). 
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In total, 363 eye diagrams and corresponding AGSI datasets 
were collected. The image size for both datasets is 256×256, 
with steps of AGSI module 1 and 2 configured as m = 160 
and n = 96, respectively. The eye diagrams and AGSI training 
datasets were individually labeled and stored in separate 
hierarchical data format 5 (HDF5) files, streamlining data 
management and accessibility during network training. 

The traditional GASF requires sufficient time-series data to 
encompass meaningful information. On the other hand, as 
demonstrated in  Fig. 4, AGSI came up with the successful 
representation of channel characteristics using only the 
information of 2-bit signals corresponding to the 4 unit intervals 
(UI). The introduction of AGSI allowed for a mapping of SI-
related impacts stemming from channel parameter changes (W, 
S, H) onto the RGB image space. This effectively showcases 
the capabilities and advantages of using AGSI to help GANs 
better understand channel behavior in various scenarios while 
relying on minimal input data.  

IV. VERIFICATION OF THE PROPOSED AGSI-GAN BASED EYE 
DIAGRAM ESTIMATOR FOR DESIGN OF HBM INTERPOSER 
After completion of 100 training epochs for each model, 

Table I presents the relative error between the ground truth and 
various eye diagram metrics for the following cases: applying 
GASF to SBR, applying GASF to pseudo-random bit sequence 
(PRBS) signals, and using AGSI as an input. When using only 
SBR as input, the network struggled to accurately interpret 
channel characteristics, which results in generated images that 
lack precision. PRBS allowed observing responses to various 
random bit patterns, providing more comprehensive information. 
However, PRBS also exhibited random errors exceeding 1% in 
eye height and width and fails to estimate overshoot.  

In contrast, incorporating AGSI enabled the generated 
images to accurately reflect various eye diagram metrics, while 
maintaining similar input data generation time (tinput) as others. 
When utilizing the GPU resource GeForce RTX 3090, the 
inference time takes around 6.8 µs per sample, and the total 
elapsed time to perform channel simulation and obtain 
waveforms such as SBR & FEXT, as well as create AGSI, is less 
than 15 s. This breakthrough significantly reduced eye diagram 
simulation times, which typically range from several minutes to 
tens of minutes. Fig. 5(a) compares the generator's loss over 

 

epochs for cGANs using each input, with AGSI demonstrating 
faster convergence. This indicates that incorporating AGSI into 
the input data design enables the network to learn from a wide 
data distribution, even with substantial step size changes across 
diverse design parameters. Fig. 5(b) shows the generated eye 
diagram which accurately represents all key parameters, with 
minimal blur and using previously unseen design parameters.  

V. CONCLUSION 
In conclusion, we demonstrated how SI/PI engineers can 

implement AGSI-GAN to develop more accurate and efficient 
estimators based on specific application requirements. The 
proposed AGSI-GAN based eye diagram estimator had 
significantly improved time efficiency maintaining high 
accuracy in HBM interposer design. The proposed AGSI 
estimation method can be extended to other target applications 
and performing SI/PI co-simulation with various components 
such as power induced noise. Additionally, the proposed 
method with reinforcement learning (RL) can be investigated 
for optimizing various design parameters. 
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TABLE I 
COMPARISON OF COMPUTATIONAL TIME AND RELATIVE ERROR  

OF ESTIMATED EYE DIAGRAM METRICS  

Method tinput Eye height 
(error) 

Eye width 
(error) 

Overshoot 
(error) 

GASF (SBR) 11.8 s 7.1 % 3.6 % 17.4 % 

GASF (PRBS) 13.8 s 1.3 % 1.8 % 15.1 % 

AGSI (SBR & FEXT) 13.9 s 0.4 % 0.4 % 3.3 % 

 

 
Fig. 4. AGSI results based on the (W, S, H) of the train dataset in units of µm. 
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(a)             (b)   

Fig. 5. (a) Generator's loss over epochs for cGANs using GASF and AGSI. (b) 
Ground-truth and generated result with (W, S, H) = (1.10, 1.10, 1.30) in µm.  
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