
Knowledge Distillation and Multi-task Feature
Learning for Partial Discharge Recognition

1st Jinsheng Ji
School of Electrical and Electronic Engineering

Nanyang Technological University
639798, Singapore

jinsheng.ji@ntu.edu.sg

2nd Zhou Shu
School of Electrical and Electronic Engineering

Nanyang Technological University
639798, Singapore

zhou.shu@ntu.edu.sg

3rd Hongqun Li
Grid Digitalisation

SP Group
349277, Singapore

lihq@spgroup.com.sg

4th Kai Xian Lai
Asset Sensing&Analytics

SP Group
349277, Singapore

kaixian@spgroup.com.sg

5th Yuanjin Zheng
School of Electrical and Electronic Engineering

Nanyang Technological University
639798, Singapore
yjzheng@ntu.edu.sg

6th Xudong Jiang
School of Electrical and Electronic Engineering

Nanyang Technological University
639798, Singapore
exdjiang@ntu.edu.sg

Abstract—To achieve accurate detection and recognition of
partial discharge (PD) in switchgear, developing an intelligent
PD diagnosis system has garnered significant attention in recent
years. Due to inevitable noise interference and high similarity
of different PD signals, detecting and identifying PDs using a
portable PD detector poses significant challenges. In this study,
we aim to transfer the knowledge acquired by the large-scale
network to a lightweight network for precise PD recognition.
To achieve this, we employ a k-means clustering model to
effectively separate signals originating from different sources,
thereby obtaining Phase Resolved Partial Discharge (PRPD) pat-
terns. Then, we introduce knowledge distillation and a multi-task
feature learning framework to extract discriminative features
from PRPD patterns. We conduct experiments and compare the
proposed method against some state-of-the-art methods on our
constructed PD recognition dataset to evaluate the superiority of
the proposed method.

Index Terms—Knowledge distillation, Partial discharge, Pat-
tern recognition

I. INTRODUCTION

Partial discharge (PD) denotes localized breakdowns in
insulation between conductors within electrical systems. Al-
though these discharges may seem insignificant, they can
profoundly affect the performance and reliability of high-
voltage equipment [1]. PD classification serves as a vital
tool for assessing and mitigating risks associated with partial
discharges. Accurate PD classification plays a pivotal role
in proactive maintenance planning, reducing downtime, and
preventing catastrophic failures, thus safeguarding the reliable
operation of high-voltage equipment. By categorizing PDs
based on measurable attributes, engineers and experts gain
a comprehensive understanding of their characteristics and
implications. By categorizing PDs according to parameters
such as magnitude, frequency, and waveform shape, engineers
gain valuable insights into their severity and type. This enables
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Fig. 1. The designed PD detector and high-frequency current transformer
(HFCT) sensor deployed in distribution substation.

them to make informed decisions regarding maintenance or
repair [2].

To detect partial discharges that originate from multilevel
pulsewidth in power electronic devices, a machine learning
(ML) based model is introduced in [3] by concatenating
a sequence of extracted features to capture the temporal
dependence of consecutive PDs. In [4], a novel approach that
combines wavelet kernels with convolutional neural networks
(CNNs) is presented to accurately localize partial discharge
sources in power apparatus. To handle partial discharge recog-
nition with complex data sources, a deep convolutional neural
network (DCNN) model is employed in [5] to automatically
extract the features from the PRPD patterns and achieves
impressive results. PRPD patterns are divided into multiple
phase windows and features of discharge magnitude and
number of pulses are extracted from each window to form
1-D histograms for the PD classification in [6].

Different from previous methods, a knowledge distillation
and multi-task feature learning framework is proposed to ex-
tract informative features from the PRPD patterns. Specifically,
we adopt a teacher network to learn useful information from a
large amount of PD data collected in the power substation, and
then soft-labels are generated by the teacher network to guide
a light-weight student network to obtain accurate PD type
predictions. Besides, a multi-task learning scheme is further



Fig. 2. Framework of knowledge distillation and multi-task feature learning for partial discharge recognition. Multiple sub-PRPD patterns are obtained
according to the signal clustering results. Light-weight student network is guided by the huge teacher network to learn more effective knowledge. Multi-task
classifiers are trained to distinguish between noise and PDs as well as classify different types of PDs simultaneously. FC and GAP represent global average
pooling and fully connected layers respectively.

proposed to learn more robust and generalized features from
the PRPD patterns.

II. METHODOLOGY

A. PRPD Pattern Preparation

The overall framework is demonstrated in Fig. 2. As the
power substation is a complex environment with diverse
electrical interferences, it is challenging to recognize partial
discharge accurately due to the presence of various noises
within the signals captured by the PD monitoring system.
Consequently, eliminating the interference of noise on PD
identification is the primary task. Based on this fact, frequency
transform using Eq.(1) is used to represent the captured
signals.

X(k) =

N−1∑
n=0

xne
− i2π

N kn, (1)

where X(k) is the kth element of the DFT features vector,
N is the length of pulse, xn is the nth element of the time-
series signal. Then, a k-means based clustering algorithm is
applied to separate signals into different groups according to
their characteristics. With the help of frequency features X ,
each clustered signal group can be regarded as single-source
signals with similar frequency distribution.

Fig. 3. Frequency feature based clustering for noise and PD signals separation.

As shown in Fig.3, PD signals and noise are separated
and clean PRPD patterns can be generated for further PD
recognition. In total, we collect 2924 PRPD patterns contain-
ing noise(2104), corona(177), internal(485) and surface(158).

These PRPD patterns are manually checked and labeled for
PD recognition.

B. Knowledge Distillation for PD recognition

The overall framework is presented in Fig. 2. We binary the
PRPD patterns and normalize them into image format with a
size of 64 × 64. Besides, we also design PRPD pattern data
augmentation strategy as demonstrated in Fig. 4 (a). These
augmented PRPD patterns can be used to train the deep neural
network for PD recognition task.

Lt =−
m∑
i=1

log ptyi

+ λ

k∑
i=1

max{d(ai,pi)− d(ai,ni) +mg, 0},
(2)

where m is the number of one batch samples, ptyi is the
predicted results corresponding to the ground truth class yi.
where k is number of triplet pairs, d(a,p) is the `2-norm
distance between the anchor a and a positive sample p, n is
a negative sample. λ is a parameter to balance the two losses.

Lk1
s = −1

c

c∑
i=1

(yi + γŷti) log ŷ
s
i , (3)

where ŷti is the output of the teacher network which acts as a
soft label to guide the student network. γ is a hyperparameter
to balance the soft label ŷti and one-hot ground label yi.

C. Multi-task Feature Learning

In addition to the joint learning with the teacher network,
our proposed student network are responsible for another two
classification tasks, that is, to judge whether it is PD or not,
and the other is to distinguish different types of PDs. The loss
functions for the two tasks are defined as in Eq. 4.

L = Lt + Lk1
s +

−α
~c

~c∑
i=1

~yi log ~y
s
i +
−β
c̃

c̃∑
i=1

ỹi log ỹ
s
i , (4)

where Lt and Lt1
s are the cross-entropy based classification

loss for the teacher and student networks. ~c is 2 indicating



two classes of PD and noise, ~ysi is the predicted results of
FC1 in Fig. 2 for class i. c̃ is the class number of PDs, ỹsi is
the predicted results of FC2 in Fig. 2 for class i. α and β are
two hyperparameters to balance the loss of task t2 and t3.

Fig. 4. (a) Demonstration of the data augmentation strategy of the PRPD
pattern for deep neural network training. (b) Confusion matrix on the testing
set achieved by the proposed method with knowledge distillation and multi-
task feature learning.

III. EXPERIMENTS

A. Implementation Details

The InceptionV3 [10] and light-weight MobileNetV3 [11]
are adopted as the backbones of our teacher and student
networks respectively. The dataset is split randomly into
the training/validating/testing set (30%/20%/50%). During the
testing stage, student network will output the prediction with-
out relying on the teacher network. We padding the input
image to meet the size requirements of the network input.
We set the hyperparameters λ, γ, α, and β to 0.3, 0.06, 0.6,
and 0.8 respectively. The initial learning rate is configured to
0.01. In addition to comparing with other methods as the listed
methods in Table I and perform experiments, the effectiveness
of data augmentation(AUG), knowledge distillation(KD) and
multi-task feature learning(MTL) are investigated on our con-
structed PD dataset. All experiments are implemented using
the deep learning framework of PyTorch on server computer
with a Nvidia A6000 GPU.

TABLE I
COMPARISON WITH SOME STATE-OF-THE-ART METHODS ON PD

RECOGNITION DATASET.

Method Backbone size Acc

Ref [7] Customized 64×64 88.9%
Ref [8] Customized 64×64 89.6%
MobileNetV3 [11] MobileNetV3 64×64 90.4%
Ref [9] InceptionV3 64×64 92.1%

Teacher InceptionV3 64×64 93.1%
Teacher+AUG InceptionV3 64×64 97.4%
Student+AUG MobileNetV3 64×64 93.9%
Student+AUG+KD MobileNetV3 64×64 97.1%
Student+AUG+KD+MTL MobileNetV3 64×64 98.2%

B. Experimental Results Analysis

Experimental results are demonstrated in Table I. In [7]
and [8], a self-defined network is used to extract features
from the PRPD patterns. Work [9] also uses InceptionV3
[10] as backbone network to handle the PD recognition task.
Compared with MobileNetV3 [11], our student model also

adopts the same backbone network and achieves the highest
accuracy of 98.2% with the help of knowledge distillation and
multi-task feature learning modules. As depicted in Fig. 4 (b),
most of the noise and PD patterns are correctly classified and
only some PRPD patterns belonging to internal and surface
PDs are confused. That means our knowledge distillation
framework can learns effective knowledge from the teacher
network and help the student network achieve more accurate
predictions.

IV. CONCLUSION

The objective of this study is to transfer knowledge ob-
tained from a complex teacher network to a light-weight
student network for accurate PD recognition. Initially, a k-
means clustering model is employed to differentiate signals
originating from distinct sources, resulting in the extraction
of Phase Resolved Partial Discharge patterns. Subsequently, a
knowledge distillation technique and a multi-task feature learn-
ing framework are employed to extract discriminative features
from the PRPD patterns, enabling precise PD type prediction.
Experimental results and comparison with some state-of-the-
art methods on our PD dataset evaluate the effectiveness of
the proposed method.
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