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Abstract—This paper proposes a method to use the sensitivity
information for efficient uncertainty quantification using the
Least Squares-Support Vector Machine (LS-SVM) framework.
The inclusion of the sensitivity information in the LS-SVM
framework allows us to reduce the number of simulations.
Finally, the proposed approach is verified with use of an circuit
example with 25 random parameters.

Index Terms—Machine Learning, SVM, LS-SVM, Parametric-
Derivatives, Curse of dimensionality

I. INTRODUCTION

In recent years, device scaling has led to process varia-
tions in the electronics. Several approaches, such as Polyno-
mial Chaos and Rational Polynomial Chaos, have been sug-
gested [1] to form a surrogate model for the output Quantity
of Interest (QoI). In addition to the above, several machine
learning techniques such as Least Squares-Support Vector Ma-
chines (LS-SVM) [2,3] and Gaussian Process Regression [4]
have also been proposed for uncertainty quantification for the
QoI. Although the above techniques can accurately compute
the statistical properties of QoI, the number of simulations
required in the above methods can be a bottleneck.

This paper proposes using sensitivity information with the
LS-SVM method to compute the surrogate model for the QoI
with fewer circuit simulations since computing sensitivity is
less expensive than performing circuit evaluations. The use of
sensitivity information for the Polynomial Chaos method has
been proposed in [5], where it was shown that the sensitivity
information can be used to compute the surrogate model
for QoI accurately with fewer circuit simulations. Sensitivity
information has been used in the context of Support Vector
Regression in [6] for learning the derivatives of a given func-
tion. Moreover, the derivative information has also been used
with Radial Basis Kernels in [7] to improve the training time
of the Gaussian Processes. This paper adapts the technique
in [6] and [7] for using it for uncertainty quantification in the
field of circuit systems as most commercial circuit simulators
can efficiently compute the sensitivity information.

II. BACKGROUND

Consider a circuit for which we need to quantify the
uncertainty of a given quatity of interest (QoI), given that some
circuit parameters are randomly distributed. The approach used
in this paper is to first compute a surrogate model M(ξ)
that computes the QoI from the parameters ξ ∈ Rd, where
d is the number of parameters. The surrogate model is then

used in order to compute statistical properties of the QoI. Our
approach builds upon the LS-SVM method in [8] where the
model is defined as,

M(ξ) = wTϕ(ξ) + b (1)

where ϕ(ξ) : Rd 7→ RD is a vector valued function, and
w ∈ CD and b ∈ C, are the unknown weights and the biases,
respectively.

In order to compute the model parameters w and b, the
LS-SVM approach in [8] solves the following constrained
optimization problem,

argmin
w,b,ϵ

1

2
w∗w +

1

2
γϵ∗ϵ (2)

such that,

ϵk = v(ξ(k))−M(ξ(k)) (3)

= vk −wT ϕ(ξ(k))− b; k = 1 . . .K

where vk ∈ C is the QoI evaluated at sample ξ(k) ∈ Rd,
and K is the number of samples. Note that ϵk ∈ C is the
error between the QoI vk and the model, M(ξ(k)), evaluated
at ξ(k). For brevity, we denote ϕ(ξ(k)) as ϕk throughout the
remainder of this paper. The above constrained optimization
problem is solved in [8] using the Lagrangian approach. In
this paper we propose a new method that takes into account
sensitivity information, and therefore requires fewer samples
to compute the model.

III. PROPOSED APPROACH

In order to reduce the required number of simulations, we
propose adding the sensitivity of QoI as an extra constraint
to the optimization problem in (2). Using the sensitivity
constraint, the optimization problem in (2) becomes,

argmin
w,b,ϵ

1

2
w∗w +

1

2
γϵ∗ϵ+

1

2
γ′

d∑
i=1

K∑
k=1

η̄i,kηi,k (4)

such that,

ϵk = vk −wT ϕk − b

η1,k = v1,k −wT ϕk,1

...

ηd,k = vd,k −wT ϕk,d

where, vi,k denotes the sensitivity of vk with respect to the

parameter ξi, i.e. vi,k ≡
∂v

(
ξ(k)

)
∂ξi

. Similarly, ϕi,k denotes the979-8-3503-1798-5/23/$31.00 ©2023 IEEE
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derivative of ϕk with respect to the parameter ξi at sample ξ(k),

i.e.,
∂ϕ

(
ξ(k)

)
∂ξi

, and ηi,k denotes the discrepancy between vi,k
and the derivative of the model with respect to the parameter
ξi at sample ξ(k). To solve the optimisation problem in (4),
we can write the Lagrangian as,

L(w, b, ϵ, αk, β1,k, . . . , βd,k) =
1

2
w∗w +

1

2
γ

K∑
k=1

ϵ̄kϵk

+
1

2
γ′

d∑
i=1

K∑
k=1

η̄i,kηi,k −
K∑

k=1

αk

(
ϵk − vk +wTϕk + b

)
−

d∑
i=1

(
K∑

k=1

βi,k

(
−vi,k +wTϕi,k

))

where αk and {βi,k}di=1 are the Lagrange multipliers
for the QoI constraints and the sensitivity constraints for
all d-parameters, respectfully. To find the model, M (ξ),
we compute the partial derivative of the Lagrangian,
L(w, b, ϵk, η1,k, . . . , ηd,k, αk, β1,k, . . . , βd,k), with respect to
all the variables and set those equal to zero, and we obtain the
following equations,

∂L

∂b
= 0 ⇔

K∑
k=1

αk = 0 (5)

∂L

∂ϵk
= 0 ⇔ ϵk =

1

γ
αk (6)

∂L

∂ηi,k
= 0 ⇔ ηi,k =

1

γ′ βi,k ; i = 1, . . . , d (7)

∂L

∂w
= 0 ⇔ w =

K∑
k=1

αkϕk +

d∑
i=1

(
K∑

k=1

βi,kϕi,k

)
(8)

∂L

∂αk
= 0 ⇔ wTϕk + b+ ϵk = vk (9)

∂L

∂βi,k
= 0 ⇔ wTϕi,k + ηi,k = vi,k ; i = 1, . . . , d (10)

Upon substituting (6), (7), and (8) in (9) and (10) we obtain
the following set of equations at a given sample ξ(k),

K∑
k=1

αk = 0 (11)

K∑
j=1

αjϕ
T
j ϕk +

d∑
i=1

K∑
j=1

βi,jϕ
T
i,jϕk + b+

1

γ
αk = vk (12)

K∑
j=1

αjϕ
T
j ϕ1,k +

d∑
i=1

K∑
j=1

βi,jϕ
T
i,jϕ1,k +

1

γ′ β1,k = v1,k (13)

...
K∑
j=1

αjϕ
T
j ϕd,k +

d∑
i=1

K∑
j=1

βi,jϕ
T
i,jϕd,k +

1

γ′ βd,k = vd,k (14)

Writing the above set of equations at all samples
{
ξ(k)

}K

k=1
,

we obtain the following system,
0 1T 0T 0T . . . 0T

1 Ω+ 1
γ I Ω1 Ω2 . . . Ωd

0 Ω1 Ω1,1 +
1
γ′ I Ω2,1 . . . Ωd,1

...
...

...
...

. . .
...

0 Ωd Ωd,1 Ω2,d . . . Ωd,d +
1
γ′ I





b
α
β1

β2
...
βd


=



0
v
v1

v2

...
vd


(15)

where, v ∈ CK contains the QoI evaluations at K samples and
v1, . . . ,vd ∈ CK contain the sensitivity of QoI with respect
to all d-parameters. Also, α,β1, . . . ,βd ∈ CK are the vectors
of unknowns Lagrange multipliers; these can be calculated by
solving the system in (15). Ω ∈ RK×K is the Kernel matrix
defined below,

Ω =


ϕT
1 ϕ1 ϕT

2 ϕ1 . . . ϕT
Kϕ1

ϕT
1 ϕ2 ϕT

2 ϕ2 . . . ϕT
Kϕ2

...
...

. . .
...

ϕT
1 ϕK ϕT

2 ϕK . . . ϕT
KϕK

 (16)

In (15), Ωp ≡ ∂Ω
∂ξp

∈ RK×K is the derivative of the Kernel
matrix, Ω, with respect to the parameter ξp, it is defined as

∂Ω

∂ξp
=


ϕT
1 ϕp,1 ϕT

2 ϕp,1 . . . ϕT
Kϕp,1

ϕT
1 ϕp,2 ϕT

2 ϕp,2 . . . ϕT
Kϕp,2

...
...

. . .
...

ϕT
1 ϕp,K ϕT

2 ϕp,K . . . ϕT
Kϕp,K

 (17)

The term ϕT
1 ϕk,p in (17) is the derivative of the Kernel,

κ(ξ(1), ξ(k)), with respect to ξp at sample ξ(k); it is defined
as [9],

ϕT
1 ϕ

(p)
k ≡ ∂

∂ξp
κ(ξ(1), ξ(k)) (18)

Similarly, Ωp,q ≡ ∂2Ω
∂ξp∂ξq

∈ RK×K is the derivative of the
Kernel matrix with respect to parameters ξp and ξq .

∂2Ω

∂ξp∂ξq
=


ϕT
q,1ϕp,1 ϕT

q,2ϕp,1 . . . ϕT
q,Kϕp,1

ϕT
q,1ϕp,2 ϕT

q,2ϕp,2 . . . ϕT
q,Kϕp,21

...
...

. . .
...

ϕT
q,1ϕp,K ϕT

q,2ϕp,K . . . ϕT
q,Kϕp,K

 (19)

Similarly, in (19) ϕq,jϕp,k denotes the derivative of the Kernel
with respect to parameters ξq and ξp at samples ξ(j) and ξ(k),
respectively (17). It can be written as,

ϕq,jϕ
T
p,k ≡ ∂2

∂ξq∂ξp
κ(ξ(j), ξ(k)) (20)

Upon solving (15), we obtain the values for the Lagrange
multipliers, substituting (8) in (1), we obtain the expression
for the surrogate model as a function of Lagrange multipliers,

M(ξ) = b+
K∑

k=1

αkκ(ξ
(k), ξ)+

d∑
i=1

K∑
k=1

βi,k
∂κ(ξ(k), ξ)

∂ξi
(21)

As we can see in the above expression, the surrogate model
computed using the proposed approach uses kernel derivatives
as opposed to the LS-SVM based model [3]. Due to this, the
model in (21) is accurate despite using fewer samples than the
LS-SVM technique, as demonstrated in the next section.
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R7= 25Ω  

R8= 30Ω  

LS = 10nH  L4 = 10nH

L5 = 10nH

L2 = 6nH

L3 = 5nH

L6  = 5nH
L7 = 5nH

L8 = 5nH

Vout

1⑱

Fig. 1. Interconnect circuit.

IV. NUMERICAL EXAMPLE

We performed the frequency analysis for 300 frequency
points between 500MHz to 3GHz for the circuit shown in
Figure 1 to test the performance of the proposed approach.
We used d = 25 random parameters following a uniform
distribution for the proposed approach. The circuit components
used as random parameters are named, Rs, Ls, Cs, R1,
L2, C1, C2, R2, C11, R3, L3, C4, C5 R4, L4, C6, L5,
C7, R7, L8, C12, C13, R8, R5, and R6. We used a 10%
relative uniform variation around their respective mean values
shown in Figure 1. We compared the performance of the
proposed approach with the Monte-Carlo method, which was
run with 10, 0000 samples. For both the LS-SVM method and
the proposed derivative LS-SVM (der. LS-SVM) method, we
used a polynomial kernel of degree 3. The LS-SVM required
K = 300 simulations to accurately compute the surrogate
model for QoI, whereas the proposed approach only needed
K = 50 samples. As it can be seen in Figure 2, the proposed
approach accurately computes the mean and standard deviation
of the Vout. Figure 3 shows the PDF obtained with K = 100
and K = 300 simulations for the LS-SVM approach. As
can be seen in Figure 3, the PDF obtained with K = 100
simulations using LS-SVM techniques does not match the
PDF obtained using the Monte-Carlo technique, while the PDF
obtained with K = 50 simulations using the proposed der. LS-
SVM technique accurately models the PDF of | Vout |.

V. CONCLUSION

This paper presented the sensitivity information to reduce
the computational complexity of the LS-SVM approach. For
the example shown, it was demonstrated that the proposed ap-
proach could compute the statistical properties of the QoI with
similar accuracy with six times fewer simulations compared
to the LS-SVM method.
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