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Abstract—This paper presents an efficient method for the
analysis of power supply induced jitter using machine learning
techniques in the presence of supply noise for CMOS inverter
circuits. In the proposed hybrid approach, knowledge-based neu-
ral network and deep belief neural network produce reasonably
accurate jitter response while providing an efficient training using
training data extracted from both analytical models as well as a
circuit simulator. The proposed model can also handle varying
inputs without re-training the network’s parameters.

Index Terms—Deep belief neural networks, knowledge-based
neural networks, power supply induced jitter.

I. INTRODUCTION

Even with the most recent developments in VLSI technol-
ogy, the performance and quality of the system are signifi-
cantly affected by the power supply noise which is a major
contributor of producing timing jitter in high-speed high-
density digital circuits. Jitter becomes very critical when power
supply is shared with many IPs, making it harder to achieve
the desired timing budgets. Hence, ensuring signal and power
integrity to meet the desired timing budgets have become very
challenging for modern electrical circuits.

For jitter estimation, traditional approaches require simu-
lation of large number of bits that can make the process
prohibitively CPU expensive. In order to address the com-
putational burden, several efficient models can be found in
the literature [1]-[4]. Efficient semi-analytical methods for
determining PSIJ for current mode and voltage mode drivers
are introduced in [1] and [2], respectively. In [3], power supply
induced jitter is obtained in the presence of transmission
media as well as ground bounce noise for voltage mode
driver circuits. Recently, device parameter-based model for
PSIJ analysis is proposed in [4].

Computer-aided design (CAD) approaches based on neural
networks have been introduced for signal and power integrity
analysis [5]-[9]. In [5], knowledge-based neural network for
on-chip interconnects is investigated. Eye-width prediction
using S-parameter based on ANNs is proposed in [6]. In [7],
height of the eyediagram is estimated using artificial neural
network for USB 3.0-based models. Recently, an efficient
modeling using knowledge-based neural networks for analysis
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of PSIJ and PSIJ transfer function in CMOS inverters is
presented in [8] and [9], respectively.

In this paper, analysis in [9] is further advanced to estimate
PSIJ in the presence of power supply noise. For this pur-
pose, knowledge-based neural network via deep belief neural
network [10] and [11] is developed. The primary benefit of
this approach is that it eliminates the process of retraining for
each case of varying input noise, as in [9]. Also, the training
process in [9] starts with a random initialization of weights for
multilayer perceptron (MLP) neural networks which may lead
to slower convergence and the training process can get trapped
in local optima. The proposed model also eliminates random
initialization of weights to achieve global optimization by
employing an unsupervised learning technique. Results from
a case study of inverters based on 22 nm CMOS technology
[12] demonstrate that the proposed model predicts the PSIJ
with reasonable accuracy while ensure the faster convergence.

II. DEVELOPMENT OF THE PROPOSED APPROACH FOR THE
ANALYSIS OF POWER SUPPLY INDUCED JITTER

In this section, an efficient model for predicting PSIJ using
deep belief and knowledge-based neural networks is presented.
For the development of the purposed hybrid neural network
model, an application of a CMOS inverter is considered as
shown in Fig. 1. Both the transistors, NMOS (Mn) and PMOS
(Mp) are connected to a load capacitor (CL) and a data input
(vin(t)). The noise source (vn(t)) is also injected into the
system, connected to a supply voltage (VDD).

The traditional approach for PSIJ analysis associated with
CMOS inverters requires thousands of SPICE based transient
simulations for a reasonable PSIJ estimation which can make
the process prohibitively CPU expensive.

On the other hand, MLP-based neural networks can be
significantly more efficient [9] than traditional approaches
since they can approximate any non-linear complex function.
However, there are some drawbacks to consider such as
random initialization of the network’s parameters (weights and
biases) that can effect the scalability of the networks; training
process can also get trapped in local optima [10] since the PSIJ
response at the output of CMOS inverter is highly nonlinear
with multiple minima and maxima. Therefore, an efficient and
accurate training process is required that can determine the
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Fig. 1: CMOS inverter with PSN and load capacitor

suitable initial weights while eliminating the learning process
to terminate at local optima, as discussed in the following
section.

A. Deep Belief Neural Network (DBNN)

Deep belief neural networks are multi-layer probabilistic
generative models that can learn to extract a deep hierarchical
nonlinear representation of the training data in an unsupervised
manner. A DBNN model is a collection of stacked RBMs
(Restricted Boltzmann Machines) where the output of the
previous RBM is considered as the input of the next RBM
as shown in Fig. 2. All the RBMs are sequentially trained
via unsupervised learning approach in order to obtain initial
weights (W1, . . . ,W4). This training process pretrains the
weights in a systematic way and has an advantage over random
initialization of weights that leads to a faster convergence to
achieve global optimization.

For unsupervised training, contrastive divergence (CD) algo-
rithm is used to train these multiple RBMs. The CD algorithm
[10] uses energy function associated with RBMs to optimize
the corresponding probability distribution in order to update
the weight parameters.

Once all the RBMs are trained, an additional layer of neu-
rons which represents the output of deep belief neural network
is added for the purpose of supervised learning (Fig. 2). In
this process, weights obtained using unsupervised training are
further adjusted in order to improve the detection performance
of the network while obtaining the global minimum. Note that,
a single neuron is used as an additional layer since PSIJ is
evaluated only at the output of CMOS inverter.

For supervised learning, the Levenberg-Marquardt (LM)
algorithm [9] is used to fine-tune the network’s parameters.
The LM algorithm propagates error information from the
output layer to the input layer and updates the parameters
accordingly.

B. Proposed Hybrid Neural Network Model using Deep Belief
and Knowledge-based Neural Networks (DB-KBNN)

In this section, knowledge-based neural network developed
in [9] is advanced via deep belief network for PSIJ analysis.
First, an error vector is calculated using both, fast-to-evaluate
analytical model for PSIJ [4] and CPU expensive circuit
simulator (HSPICE). The error vector can be written as:

J⃗E = J⃗H − J⃗A where J⃗A and J⃗H are the PSIJ responses
(training data) associated with analytical model and HSPICE,
respectively. Note that, HSPICE gives accurate PSIJ response.

Next, DBNN is trained employing J⃗E . Once DBNN is
trained, the error response can be evaluated at any given input.
The DBNN-based error response is referred to as, J⃗DB .

Next, the final PSIJ response (J⃗) is obtained for any given
input by combining both, the analytical response as well as
the DBNN-based error response, given as J⃗ = J⃗DB + J⃗A.

Since norm of J⃗E is usually smaller than the norm of J⃗A
and J⃗H , the training process can be considerably efficient.
Hence, additional layer of knowledge employed by KBNN
via analytical relations accelerates the training process.

C. Data Generation and Training of the Proposed Model

In this section, the proposed model is trained using an
appropriate set of training data.

Let the input (I⃗) of the proposed model be defined as:
I⃗ = [As fs ϕs CL]

T where As, fs and ϕs represent ampli-
tude, frequency and phase angle of power supply noise (vs(t)),
respectively. The corresponding lower and upper limits for
parameters related to I are: 0 ≤ An ≤ 100 mV , 10MHz ≤
fs ≤ 1 GHz, 0◦ ≤ ϕs ≤ 360◦ and 0 ≤ CL ≤ 250 fF .

In this work, training data for input I is divided into two
sets. The first set of data contains equally spaced input samples
and holds 20% of the total data. For the second set, input is
randomly distributed and contains 80% of the total data.

The data set based on equally spaced samples provides a
discrete nonlinear PSIJ spectrum with varying frequencies.
In this process, PSIJ is evaluated at midpoint of the desired
input range (I/2). Note that, 20% of the data gives good
approximation of the PSIJ spectrum. For the second set, PSIJ
is evaluated when input parameters related to I are randomly
distributed by applying a uniform distribution.

The PSIJ spectrum is generated at the midpoint of the
desired range I/2 in order to allow for an even distribution of
random samples. Since PSIJ spectrum provides a discrete non-
linear pattern with varying frequencies, it can be considered
as an ideal reference plane. On the other hand, generating data
based on random sample injects PSIJ variations in the network.
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Fig. 2: Structure of DBNN with three RBMs.



This gives information on how the PSIJ is varying with respect
to the reference (PSIJ spectrum). Note that, the above analysis
is used to generate PSIJ responses for both analytical model
and HSPICE for the purpose of calculating error vector J⃗E ,
which is then used to train DBNN.

III. RESULTS AND DISCUSSION

In this section, the proposed methodology to predict power
supply induced jitter is validated. For this purpose, CMOS
circuit operating at 125 MHz with a DC supply voltage
(V DD) of 1.2V is considered. While obtaining the PSIJ
training data, either using HSPICE or analytical expressions,
PSIJ is computed over 500 bits.

In this experiment, a single-tone noise of 311 MHz is
applied on the power supply of a CMOS inverter having 10 fF
load capacitor. Both, amplitude and phase of the noise source
are varied simultaneously from 0 to 100 mV and 0◦ to 275◦

with a step size of 4 mV and 8 ◦, respectively.
In the training process, a total of 50 training data points are

generated and 2 RBMs with 6 hidden neurons in each layer are
considered. The training time using the CD algorithm is 0.1
sec and 107 epochs are required to achieve a training error of
10−10. Using pretrained weights from unsupervised learning,
training via LM algorithm requires only 5 epochs to achieve
an error of 10−12 in 0.001 sec. Thus, optimizing the initial
weights using unsupervised learning not only provides a good
initial guess but also assists supervised learning to calculate
global optimization in an efficient manner.

For comparison purpose, ANN developed in [9] is trained
using a similar structure as used for the proposed approach.
Based on random initialization, training time using the LM
algorithm is 0.14 sec and 115 epochs are required to achieve
an error of 10−12.

The corresponding PSIJ responses for all the four ap-
proaches, the proposed model, closed-form expressions [4],
MLP-based neural network [9] and approach directly using
HSPICE are shown in Fig. 3. As can be seen, the proposed
approach matches reasonably well with the conventional ap-
proach more accurately compared to analytical and MLP-
based responses, while achieving a speed up of 261 compared
to HSPICE with a relative error of 0.98%.

IV. CONCLUSIONS

In this paper, knowledge-based neural network is combined
with deep belief network to develop an efficient method that
predicts reasonably accurate PSIJ response. Validating exam-
ple demonstrates the efficiency and accuracy of the proposed
model while ensure the faster convergence.
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