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Abstract—This paper presents an accurate surface formulation
based on the contour integral method and the Dirichlet-to-
Neumann operator to calculate the impedance and admittance
parameters of transmission lines of arbitrary shape. The for-
mulation only requires a discretization of the boundaries of the
conductors and dielectrics, as opposed to the entire cross-section,
which results in fast computations.

Index Terms—Admittance calculation, surface method, con-
tour integral method.

I. INTRODUCTION

Multiconductor transmission line models are important for
the signal integrity analysis of digital interconnects. To create
a transmission line model, one first needs to compute the line
impedance and admittance over a wide frequency range.

Impedance calculations carried out using standard volumet-
ric methods based on the 2D finite-element method (FEM)
or 2D volumetric integral equation methods are slow due to
the fine mesh required to model skin depth inside conductors.
Surface methods such as those based on the Dirichlet-to-
Neumann operator [1] reduce the computational complexity as
they require only the discretization of the conductors surface.
Previously, the Dirichlet-to-Neumann operator was limited
to canonical geometries such as rectangular, triangular, and
circular. Recently, we developed a technique [2] based on
the contour integral method (CIM) [3] to obtain the surface
operator for conductors of arbitrary shape. This new method
calculates the per-unit length (p.u.l.) resistance and admittance
of a transmission line made by conductors of arbitrary shape
using only a contour discretization.

This paper extends the concept of [2] to present a surface
formulation based on the Dirichlet-to-Neumann operator to
calculate the p.u.l. capacitance of transmission lines. With
respect to existing surface methods for capacitance calcula-
tion that require volumetric mesh, the Dirichlet-to-Neumann
approach only requires discretization of dielectric surface. We
generalize the Dirichlet-to-Neumann formulation presented
in [4], which can only handle rectangular and triangular
geometries, to dielectrics and conductors of arbitrary shapes
immersed in a homogeneous or multilayered background
medium.
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Fig. 1. Left-panel: Sample cross-section with two conductors (black) and
two dielectrics (light grey) inside a three-layered dielectric medium. Each
layer has different permittivity. Right-panel: Equivalent configuration after all
conductors and dielectrics are replaced by equivalent conductor charge density
ρ (in blue) and equivalent dielectric charge density ρ̃ (in red).

II. CAPACITANCE CALCULATION VIA THE CIM
We consider a transmission line made up of P conductors

and D dielectrics made up of arbitrary shapes. The background
medium can be homogeneous or layered dielectric medium, as
shown in the left panel of Fig. 1. Our goal is to calculate the
partial p.u.l. complex capacitance matrix C̃ = C + G/jω of
the transmission line which relates the scalar potential Vc and
total charge Qc on the c-th conductor as

Q = C̃V (1)

where Q =
[
Q1 . . . QP

]T
and V =

[
V1 . . . VP

]T
.

A. Discretization of Scalar Potential

We discretize all boundaries of the conductors with Nc
segments, and all of the remaining boundaries of the dielectrics
with Nd segments. Boundaries of the layered background
medium are not discretized. We expand the scalar potential
on all boundaries using pulse basis functions

V (r) =

Nc+Nd∑
n=1

vnΠn(r) , (2)

where Πn(r) is equal to one if r belongs to the n-th segment,
and is zero otherwise. The expansion coefficients in (2) are
now collected into vector

Φ =
[
v1 v2 . . . vNc+Nd

]T
. (3)
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B. Equivalent Charge Density

In order to calculate the admittance, we invoke the concept
of contrast charge density presented in [4]. We replace all the
conductors and dielectrics by the surrounding medium and in-
troduce the so-called equivalent contrast charge densities ρ(r)
and ρ̃(r) on the boundary of all conductors and dielectrics,
respectively, as shown in the right panel of Fig. 1. We expand
both equivalent charge densities using pulse basis functions as

ρ(r) =

Nc∑
n=1

ρnΠn(r) , (4)

ρ̃(r) =

Nd∑
n=1

ρ̃nΠn(r) . (5)

We collect the coefficients of (4) and (5) into vectors

R =
[
ρ1 ρ2 . . . ρNc

]T
, (6)

R̃ =
[
ρ̃1 ρ̃2 . . . ρ̃Nd

]T
. (7)

1) Conductors: When a charge is placed on a conductor
with high conductivity, it moves to conductor’s boundary very
quickly. So, contrast charge density on good conductors is
actually equal to the free charge density on the conductor
surface, and is related to the total charge Qc by

Qc =

˛
γc

ρ(r′)dc′ , (8)

where the integration is performed over the closed contour γc
enclosing the c-th conductor. The discrete counterpart of (8)
for all conductors may be written as

Q = WR . (9)

2) Dielectrics: The contrast charge density on the boundary
γd of the d-th dielectric is related to the potential V (r) by [4]

ρ̃(r) =

(
ε− εb +

σ

jω

)
∂V (r)

∂n
, (10)

where ε and σ are the permittivity and conductivity of the di-
electric, and εb is the permittivity of the background medium.
In [4], eigenfunction expansion is used to relate V (r) and
∂V (r)/∂n. Instead, here we use the contour integral method
to relate the scalar potential and its normal derivative. Inside
the dielectric medium, scalar potential V (r) satisfies

∇2V (r) = 0 . (11)

Following the application of Green’s identity [5], we can show
that the solution of (11) satisfies [3]˛

γd

[
V (r′)

∂ ln(r, r′)

∂n′
− ln(r, r′)

∂V (r)

∂n′

]
dr′ = πV (r) .

(12)
We discretize (12) with the method of moments and pulse
basis functions to obtain

Φ̂d = HΦd (13)

where Φd is a subset of Φ containing potentials on the
boundary γd, and Φ̂d is a vector that contains the expansion

coefficients of the normal derivative of scalar potential on γd.
Finally, by substituting (13) into discretized form of (10) for
all dielectrics in the system, we obtain

R̃ = YΦ , (14)

where Y is the desired surface operator, which compactly
relates contrast charge density to potentials.

C. Capacitance Calculation

The equivalent charge densities and scalar potential V (r)
are related by

V (r) = −1

ε

ˆ
∑
γc

ρ(r′)G(r, r′)dc′− 1

ε

ˆ
∑
γd

ρ̃(r′)G(r, r′)dc′

(15)
where G(r, r′) is the Green’s function of the background
medium. We discretize (15) using the method of moments
obtaining

Φ =
[
G1 G2

] [R
R̃

]
(16)

where G is the Green’s matrix. By substituting (14) into (16),
we obtain

Φ = (1−G2Y)
−1

G1R , (17)

which relates conductor potentials with equivalent charge
density on the conductors. In (17), 1 is the identity matrix.
At this point, it is straightforward to find C̃ by applying a
constant potential on the conductors, and solving (17) to find
the total charge induced on each conductor.

III. IMPEDANCE CALCULATION VIA THE CIM

In Sec. II-B2, we used the contour integral equation (12)
to find the capacitance by relating ρ(r) and V (r). The dual
problem is to find the p.u.l. impedance, relating the electric
field and current using the contour integral equation. Similar
to the capacitance case, we replace all conductors by their
surrounding medium and equivalent currents Js(r) on con-
ductors boundary. The current Js(r) on the boundary of each
conductor is given by [1]

Js(r) =
1

jω

[
1

µ

∂Ez(r)

∂n
− 1

µl

∂Ẽz(r)

∂n

]
r on γc

(18)

where Ez and Ẽz are, respectively, the electric fields on the
boundary of the conductor before and after it is replaced by
the background medium. Both Ez and Ẽz satisfy

∇2Ez(r) + k2Ez(r) = 0 , (19)

inside the conductor, where k =
√
ωµ (ωε− jσ) is the

wavenumber. In order to obtain the surface operator, we invoke
the contour integral equation for the Helmholtz equation [3]

Ez(r) =
j

2

˛
γc

[
∂G(r, r′)

∂n′
Ez(r

′)−G(r, r′)
∂Ez(r

′)

∂n′

]
dr′ ,

(20)
where G(r, r ′) is the Green’s function associated with the
Helmholtz equation in 2D medium. By discretizing (20) using
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Fig. 2. Coated differential pair example considered in Sec. IV, with l1 =
166 µm, w1 = 17.4 µm, w2 = 34.8 µm, S = 292.4 µm, h = 100.9 µm.

the method of moments, we obtain a relationship between
Ez and ∂Ez/∂n on the boundary of the conductors. This
relationship is then combined with (18) to obtain

Js = YEz , (21)

where Y is the surface admittance operator that efficiently
captures skin effect inside conductors of arbitrary shape with
only contour discretization. Readers may refer to [2] for details
on the use of (21) to calculate the impedance parameters.

IV. NUMERICAL RESULTS

We consider the coated differential line in Fig. 2. The
dimensions of the system are given in Fig. 2 and were obtained
from [6]. Table I shows the capacitance calculated for various
values of dielectric permittivities and geometrical parameters
with the proposed method and with FEM [7]. The results are
in excellent agreement with self and mutual capacitance errors
always lower than 1 pF/m. The computational time with the
proposed method was 0.80 s, as opposed to FEM which took
8 s.

Figure 3 shows the p.u.l. resistance and inductance pa-
rameters calculated for l2 = 525 µm. The plot shows
an excellent agreement between the proposed method and
FEM [7]. Impedance computation with the proposed method
required a total of 266 pulse basis functions, as opposed to
the FEM simulation which required 26,170 basis functions.
The proposed technique required 0.24 s per frequency point,
as opposed FEM [7] which required 9.05 s.

The proposed method led to a speed-up with respect to
FEM of 10X and 38X in the extraction of capacitance and
resistance/inductance, respectively. These results demonstrate
the merit of the proposed idea, and its potential for accelerating
parameter extraction in more complex 2D and 3D scenarios
that are currently under investigation.

V. CONCLUSIONS

We presented a surface method to efficiently extract the ca-
pacitance, resistance and inductance of multiconductor trans-
mission lines. The method is based on the contour integral
method, which provides an elegant way to generalize the
Dirichlet-to-Neumann approach to conductors and dielectrics
of arbitrary shape. Since the proposed method requires only a
discretization of the surface of conductors and dielectrics, it

TABLE I
EXAMPLE OF SEC. IV: CAPACITANCE VALUES (IN PF/M) CALCULATED

WITH THE PROPOSED TECHNIQUE AND WITH FEM [7].

l2 Proposed FEM Error
ε1 ε2 ∆ [µm] C11 C12 C11 C12 [pF/m]

2.94 1 - 525 76.1 -8.6 76.0 -9.0 0.4
4.3 1 - 525 104.3 -9.6 104.4 -10.0 0.4
4.3 1 - 1050 112.1 -8.6 112.8 -8.7 0.7
4.3 3.2 w 1050 123.1 -12.3 123.1 -12.6 0.3
4.3 3.3 2w 1050 128.5 -15.0 128.7 -15.4 0.4
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Fig. 3. Per-unit length resistance (top panel) and inductance (bottom panel)
obtained with the proposed method and FEM [7] for the example considered
in Sec IV

is more computationally efficient than volumetric techniques
like the finite element method.
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