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Abstract—This paper describes a technique to improve a
conformal equivalent circuit model for efficient transient analysis
of a power delivery network (PDN). The conformal equivalent
circuit of the PDN may include small capacitance due to an
irregular cell, which has a small conductor area. The small value
of the capacitance makes the time step size of an explicit leapfrog
scheme be small to ensure its numerical stability condition. The
proposed enlarged cell technique is based on enlargement of the
conductor area in the irregular cell to derive a larger capacitance
and avoid the time step size reduction.

Index Terms—conformal equivalent circuit model, enlarged cell
technique (ECT), fast transient analysis, power delivery network

I. INTRODUCTION

Verification of a power delivery network (PDN) is one of
the common and important issues in signal/power integrity
(SI/PI) design because power-supply noises seriously affect
the PI of an electronic circuit and thereby the SI of high-speed
interconnects. Therefore, it is necessary to develop proper
modeling and efficient simulation techniques for the PDN.

For circuit modeling of the PDN, both rectangular mesh
and triangular mesh approaches have been studied [1], [2].
However, the number of the meshes tends to be large to
represent the exact shape of a complex and fine structure even
if unstructured triangular meshes are used.

Recently, we have proposed a conformal equivalent circuit
model to reduce the number of the meshes without losing
the accuracy [3]. In addition, it has been demonstrated that
an explicit leapfrog scheme is suitable for the conformal
equivalent circuit to achieve the fast simulation of the PDN [3].
However, due to a limitation of a time step size, the efficiency
of the leapfrog scheme degrades in the simulation including
an irregular cell, which has a small conductor area. More
recently, we have provided one of the remedies to the time
step size limitation by adopting an implicit difference scheme
[4]. In this paper, we propose a circuit-oriented enlarged cell
technique (ECT) for the conformal equivalent circuit model to
avoid reducing the time step size of the leapfrog scheme.

II. EXISTING METHODS AND THEIR LIMITATIONS

A. Conformal Equivalent Circuit Model

The structure focused on in this paper is a pair of parallel
conductor planes on both sides of a dielectric substrate, which

Dual meshMain mesh

)1,( +ba

),( 1
+ba

),( ba ),1( ba +

),(
2

1
+ba

),(
2

1 ba +

)1,( +ba
v

),( 1
+ba

L

i

),(
2
1

+ba
i

),(
2
1

+ba
L

),(
2
1

+ba
R

),1( ba
v

+),( ba
v

),(
2
1 ba

i
+

),(
2

+ba

),(
2
1 ba

R
+ ),(

2
1 ba

L
+

Node (a, b)

),( ba
C),( ba

G

(a) (b)

Fig. 1. An conformal equivalent circuit model. (a) The top view of the
conductor plane with a non-orthogonal contour. The gray part is the conductor,
the white part is air, and the solid and the dashed line represent the main and
the dual mesh. (b) The conformal equivalent circuit model around (a, b).

is a typical PDN structure of a board and a package. We
assume that the bottom conductor is a ground plane, and the
upper plane is divided by orthogonal meshes into a number of
cells on the x-y coordinate system. In the conformal modeling
technique, the meshes themselves are not required to represent
an exact shape of the plane, and some cells may contain both
conductor and air as shown in Fig. 1(a). We call such a cell
with mixed materials a subcell and define conformal meshes
as orthogonal meshes including subcells. As illustrated in Fig.
1(a), the conformal equivalent circuit model uses the main
and dual conformal meshes [3]. The main mesh is used to
derive resistance and inductance, and the dual mesh is used
for conductance and capacitance of the equivalent circuit. Fig.
1(b) shows a cell-based circuit around the grid point (a, b),
where a and b are the nonnegative integers, and the entire
parallel plane structure can be constructed by interconnecting
a number of cell-based circuits.

For example, the capacitance C(a,b) at the node (a, b) in
Fig. 1(b) can be calculated by [3]

C(a,b) = ε
S(a,b)

h
(1)

where ε is the permittivity of the dielectric between the con-
ductor planes, h is the distance between the planes, and S(a,b)

is the conductor area of the subcell. If S(a,b) is calculated
accurately, we can compensate the inaccuracy of the shape
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Fig. 2. The cell enlargement procedure. The light gray part is the conductor,
and the dark gray parts are the intruded areas. (a) The irregular cell of S1

and the adjacent cells of Sk , k = 2, 3, 4. (b) S1 is enlarged and becomes
Seng = S1 + S′

2 + S′
3 + S′

4.

representation of the conformal meshes, and the accurate
element value is obtained. The other element values can be
derived in a similar manner. As depicted in Fig. 1, an edge
of the main mesh corresponds to a series RL branch, and a
parallel GC path is connected between the node of the grid
point (a, b) and the ground. For simplicity, we consider a
lossless case below, namely, R = G = 0 in Fig. 1(b).

B. Time Step Size Limitation of the Explicit Leapfrog Scheme

The time step size of the explicit leapfrog scheme is limited
by the numerical stability condition [5]

∆t ≤ min
a,b

(√
2C(a,b)

N(a,b)
Lmin,(a,b)

)
(2)

where N(a,b) is the number of inductors connected to the
node (a, b), and Lmin,(a,b) is the minimum inductance among
them. The condition (2) indicates that low reactances force
the time step size to be small. From (1), it is obvious that the
capacitance is proportional to the conductor area S(a,b) in the
subcell and inversely proportional to the dielectric thickness
h. Since h is generally constant throughout the PDN and
sufficiently small, it does not decrease the time step size.
On the other hand, the small conductor area induces the time
step size reduction. As for the inductance, it depends on the
aspect ratio of the conductor area [3]. In general, the aspect
ratio is not changed in both small and large cells to ensure
the accuracy, and therefore, the inductance is uniform in the
conformal equivalent circuit. Because of this, we assume that
the inductance does not affect the time step size reduction.
Consequently, one of the ideas to avoid reducing the time step
size is enlarging the small conductor area to achieve a large
value of C(a,b).

III. ENLARGED CELL TECHNIQUE (ECT) FOR THE
CONFORMAL EQUIVALENT CIRCUIT MODEL

Kirchhoff’s current law (KCL) applied to the node (a, b) in
the conformal equivalent circuit leads to

C(a,b)

dv(a,b)

dt
= −ĩ(a,b) (3)

where ĩ(a,b) is the net current flowing from the node (a, b).
The explicit leapfrog scheme discretizes (3) by staggering the
time points of the voltage and the current and provides the
difference equation

ε
S(a,b)

h

1

∆t

(
v
n+ 1

2

(a,b) − v
n− 1

2

(a,b)

)
= −ĩn(a,b) (4)

where n is the index of the time step, ∆t is the time step
size, and we intentionally rewrite the capacitance by using
the physical dimensions and parameter in (1). The updating
formula of the voltage can be derived by transforming (4):

v
n+ 1

2

(a,b) = v
n− 1

2

(a,b) −
h∆t

ε

ĩn(a,b)

S(a,b)
. (5)

If the conductor area S(a,b) in (5) is small, the capacitance
value is also calculated to be small, and we have to reduce
the time step size.

To avoid the time step size reduction, we propose the circuit-
oriented ECT, which enlarges such an irregular conductor area
to acquire a large value of C(a,b) in a similar manner in [6].
First, by assuming the total charge q(a,b) related to the net
current ĩ(a,b) flowing from the cell (a, b) and taking into
account its time rate, we define the time rate of the charge
density, ρ̂(a,b), as

ρ̂(a,b) ≡
dρ(a,b)

dt
=

1

S(a,b)

dq(a,b)

dt
=

ĩ(a,b)

S(a,b)
(6)

where ρ(a,b) = q(a,b)/S(a,b) is the charge density. Note that
ρ̂(a,b) appears in the last term of (5).

Next, assume that the irregular cell with the small conductor
area S1 as shown in Fig. 2(a). Hereafter, we refer to the cell (a,
b) as the cell 1, and the same goes for the related values, e.g.,
S(a,b) as S1. Additionally, we assume the three numbered cells
adjacent to the cell 1 as illustrated in Fig. 2(a). In this case, S1

is enlarged to Seng with which the numerical stability condition
is satisfied without reducing the time step size. This is achieved
by enlarging S1 into its adjacent cells of Sk (k = 2, 3, 4) so
that

Seng = S1 + S′
2 + S′

3 + S′
4 (7)

where S′
k are the intruded areas of the adjacent cells shown in

Fig. 2(b). The net current ĩeng flowing from the enlarged cell
can be written as

ĩeng = ρ̂1S1 + ρ̂2S
′
2 + ρ̂3S

′
3 + ρ̂4S

′
4 (8)

where ρ̂k is the time rate of the charge density in an adjacent
cell. Therefore, the time rate of the charge density ρ̂eng in the
enlarged cell is

ρ̂eng =
ĩeng

Seng
=

1

Seng
(ρ̂1S1 + ρ̂2S

′
2 + ρ̂3S

′
3 + ρ̂4S

′
4) . (9)

Finally, for the cell 1, since the total area S1 of the conductor
is inside the enlarged cell with ρ̂eng, its new net current ĩ1new
is

ĩ1new = ρ̂engS1 (10)
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Fig. 3. The example PDN (unit: mm). (a) The shape and dimensions. (b)
The conformal meshes including a number of irregular cells.
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Fig. 4. The waveform results.

and then (5) is rewritten as

v
n+ 1

2
1 = v

n− 1
2

1 − h∆t

ε
ρ̂eng (11)

where v1 = v(a,b). In (11), the enlarged cell area Seng is used
instead of the irregular area S1. For the adjacent cell k, its
new current ĩknew is obtained as

ĩknew = ρ̂engS
′
k + ρ̂k (Sk − S′

k) (12)

and the associated updating formula of the voltage becomes

v
n+ 1

2

k = v
n− 1

2

k − h∆t

ε

1

Sk
(ρ̂engS

′
k + ρ̂k (Sk − S′

k)) . (13)

As a result, there is no need to reduce the time step size by
using the new updating formulas (11) and (13) of the voltages.

It is worth mentioning that during the enlargement process,
the summation of the new currents ĩknew is equal to that of ĩk:
The net current is conservative throughout the cell enlarge-
ment, and the continuity equation, i.e., charge conservation,
holds during the formulation. Therefore, the proposed circuit-
oriented ECT is physically consistent similar to ECT for the
conformal FDTD method, in which the total electromotive
force is conservative [6].

IV. NUMERICAL RESULTS

The shapes and dimensions of the upper plane of the
example PDN are shown in Fig. 3(a). The plane has the non-
orthogonal contour which includes circular arc. The conformal

TABLE I
CPU TIME AND SPEED-UP RATIO IN THE TRANSIENT ANALYSIS

Method ∆t(ps) CPU time (s) Speed-up

Conformal + ECT 29.75 0.29 917

Conformal 4.34 1.88 141

Conventional with ∆L 29.75 0.27 985

Conventional with ∆S 2.98 266 1

meshes of the plane is also illustrated in Fig. 3(b). In this case,
each cell is 2 mm × 2 mm, and the irregular cells exist around
the circular arc. We use ε = 4.0ε0, where ε0 is the vacuum
permittivity. A current source is appended at the bottom-left
corner of the plane, and we observe the voltage waveform at
the top-right corner.

The waveform results obtained by the conformal equivalent
circuit model with ECT, existing conformal equivalent circuit
model, conventional equivalent circuit model with the cell
sizes of ∆L = 2 mm and ∆S = 0.2 mm are plotted in Fig. 4.
The conventional model with ∆L uses the orthogonal meshes
shown in Fig. 3(b) without subcells: the subcells are filled with
the conductor. All circuit models are solved by the explicit
leapfrog scheme with the time step size shown in Table I.
From Fig. 4, it is confirmed that all results except for the
conventional one with ∆L agree well with each other. The
CPU times are listed in Table I. From Table I, we can see that
the proposed ECT can improve the efficiency of the existing
conformal method with the same accuracy.

V. CONCLUSION

In this paper, the circuit-oriented ECT for the conformal
equivalent circuit model has been proposed to avoid reducing
the time step size used in the explicit leapfrog scheme.
The proposed ECT was physically consistent because the
total current is conservative throughout the cell enlargement
procedure. The numerical results showed that ECT worked
well in terms of the accuracy and efficiency compared with
the existing modeling methods.
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