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Abstract— High-speed signals are becoming more sensitive
to impedance and loss variations. In this paper, we show that
the correlation between factors that impact loss and impedance
is weak. A methodology is proposed to find corner case loss and
impedance models for a given stack-up using an inverse stack-
up optimization problem (ISOP) [1]. By using this proposed
approach, corner case loss and impedance models can be
derived in seconds. The proposed approach results outperform
the worst-case Monte Carlo analysis with uniform distribution
in all the experiments in terms of accuracy and speed-up.
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I. INTRODUCTION

With the doubling of high-speed serial link signal speeds
every generation, there is an increased sensitivity to loss and
impedance variations. Fig. 1 shows a cross-sectional analysis
of a stripline differential trace. It is seen that there are around
15 variables that impact loss, impedance, and crosstalk.
When designing a high-speed system, electrical design
engineers optimize these variables to come up with a stack-
up that achieves the target impedance with low loss and
crosstalk. Converging at the optimal choice of variables often
requires a lot of iterations and engineering judgment. In the
past, the inverse stack-up optimization framework (ISOP) [1]
was proposed to perform the stack-up optimization
efficiently. The challenge this paper discusses stems after the
optimal cross-section is determined.
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Fig. 1. Structure of a Differential Stripline Layer [1].

Even after optimizing the stack-up variables, a lot of
these variables still exhibit small variations due to process
and manufacturing tolerances [2]. This is the same reason
why the target impedance of a high-speed signal is never a
fixed number like 85 ohms or 100 ohms but usually 85 ohms
+10% or 100 ohms +15% tolerance. PCB manufacturing
vendors cannot control these variables, and these variables
usually exhibit around 10-15% variation, which in turn
impact signal loss and impedance. High-speed design
engineers should consider these impedance and loss corner
cases due to process and manufacturing variations to ensure
their designs survive high-volume manufacturing (HVM).

This paper is arranged as follows: Section II describes
ISOP at a high-level, and Section III discusses the proposed
approach to determine the worst-case impedance and loss
corner cases. Section IV shows the results of a few
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experimental test cases. The results compare the speed-up
and accuracy of the proposed approach against the worst case
of uniformly distributed Monte Carlo analysis. Section V
concludes the paper.

II. INVERSE STACK-UP OPTIMIZATION PROBLEM (ISOP)

The inverse stack-up optimization enables fast and
efficient automation of stack-up design. In a conventional
setting, stack-up optimization is done iteratively using time-
consuming simulations. This process sometimes relies on a
designer’s heuristics and intuition, which does not guarantee
an optimal solution.

To overcome these challenges, a systematic approach to
inverse stack-up design by formulating the problem as a
hyper-parameter optimization (HPO) [3] process is adopted
[1], [4]. The inverse stack-up optimization task with HPO
efficiently explores the design space (S) to find a set of
parameters (X) that best optimizes the performance figure-of-
merit (fF°" ) and meet the performance constraints (f¢ ).
This task can be formulated as shown in Eq. (1).

x* = argmin fFoY (x) (D)
X
X ESl' fori = 1,...,d
fjc(x) <O0forj=1,..,k.

subject to

where d is the number of design parameters and & is the
number of constraints.

ISOP [1] addresses the inverse stack-up optimization
problem by leveraging Harmonica [5], a discrete domain
HPO technique with a spectral approach. Fig. 2 shows the
overall flow of ISOP. ISOP consists of two stages: early
search space exploration and candidate roll-out.
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Fig. 2. ISOP Flow [1].

During the first stage, the design space is efficiently
narrowed down by identifying the set of design parameters
that significantly optimizes the specified optimization
objectives. This process is achieved by utilizing a machine
learning (ML) surrogate model based on a multi-layer
perceptron (MLP) structure. This allows fast evaluation of
our optimization objectives. The second stage finalizes that



design solution within the reduced design space by
evaluating different candidates using precise simulation
results. In this paper, a different use case for ISOP that
incorporates HVM variation to study corner case models is
investigated.
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Fig. 3. Proposed approach for capturing HVM corner cases.
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III. PROPOSED METHODOLOGY

We can effectively identify corner case models that
consider manufacturing and process variations by adapting
the ISOP framework. ISOP has two inputs, target signal
specification, such as characteristic impedance (Z) and
insertion loss (L), and the design parameter space (S,) that
constrains the optimization space. By utilizing and modifying
these two inputs, we can customize ISOP to our particular
application of identifying corner case models.

Fig. 3 illustrates the overall flow of the proposed corner
case modeling process. In Stage 1, we perform design
optimization to generate the initial stack-up design candidate
(Deana)- While Dggpq 1s optimized for optimal performance,
constructing a stack-up with this design candidate will not
capture the worst-case signal behavior resulting from
variation in HVM. Table I illustrates these variations for each
of the stack-up design parameters. All parameters are
approximated to have Gaussian distributions with their sigma
(standard deviation) values. The distribution types (like
Uniform or Gaussian) and sigma values for each design
parameter are programmable. To account for the uncertainty
caused by various parameters and to predict the worst-case
scenario, the Stage 2 for corner-case exploration is proposed.

Stage 2 takes corner case specifications (Lpest, Lworst
Zmax OF Zmin) and manufacturing variation parameter ranges
(Ry) as inputs. Table II shows a detailed description of the
corner case specifications. Lyest s Lworst » Zmax a4 Zmin
define the optimization objectives. For example, the
optimization objective for Ljeg and Ly,,,s¢ 1s to find the best
and worst loss model within an acceptable impedance range
of Z£10%. Zpax and Z,,;, find the model that has Z+10%
and Z — 10%, respectively. The second input R, is
determined by computing the sigma values using D44 and
the data from Table I. The bounds of each parameter are set

at five sigma points. Similar to S, from Stage 1, Sy,confines
the optimization design space.

The final output from corner-case exploration stage are
the design parameters for corner case, Dy, > Dryorses
Dzpax» OF Dz, .. . Utilizing these corner case models
generated by the proposed process, we can anticipate
potential worst-case scenarios. This allows us to take
preemptive measures, such as adjusting the D.q,q or
implementing other relevant actions to mitigate any adverse
effects.

TABLE L. MANUFACTURING VARIATION IN PCB STACK-UP
Sigma Equation Sigma Equation
w 0.02-W E 0.04
S 0.02-S Dk 0.01-Dk
H 0.03-H Df 0.03-Df
T 0.03-T c 400000
D | 0.1-min (H¢, Hp) | R 0.04
TABLE II. CONER CASE TASK SPECIFICATIONS
Case Task Description

Lyese | Minimize |L|, while 0.9 - Z;o < Z < 1.1 Zygr

Lyorse | Maximize |L|, while 0.9 * Zqr < Z < 1.1 Zyr
Zmax Minimize |Z — 1.1+ Z;4,|
Zimin Minimize |Z — 0.9 * Z;4,|

IV. RESULTS

In this section, the experimental result for our proposed
methodology and present design solution examples is
presented.

A.  Design solution example

Two experiments are designed for two different task
settings, E1 for when Z;,,, = 85Q and E2 for when Z,,, =
90Q. The first ISOP design optimization stage finds a set of
design parameters D.q,4 that minimizes L within the Z of
Zearx1%. Then, we compute S); with respect to D.gng by
finding 5 sigma points using the manufacturing variation data
from Table I. With this information, we find the corner case
models Dy, » Dp et » Dzpay » @nd Dz . for each

experiment.

Table III describes the experiment results and following
corner cases. Columns 2-16 display individual design
parameters, and columns 17-18 present the predicted Z and L
value from the ML surrogate model. The last two columns
present the actual simulation result on the final corner case
design parameters. Results for E1 demonstrates that the
proposed method successfully identified all corner case
model for loss and impedance. Also, it is interesting to note
that the corner case Z model does not correlate with L model,
and vice versa. The corner case Z model had L similar to
Diana’s L, whereas the corner case L model had Z similar to
Dieana ’s Z . This result emphasizes the importance of
examining the Z and L corner case models separately. The
result for E2 exhibits the same trend as E1.



TABLEIII.

D¢anas Ry AND CORNER CASE MODELS FOR EACH EXPERIMENT E1 AND E2

El w,| s, | b, |H.| Dk, | Df, | H, | Dk, | DF. |E.| R, | ¢, |Hy| Dkp | Dfy [Pred zlPred L] Zz | L
Dcana 514540 | 5| 3.6 | 001 |12] 3.6 | 0.01 025 -10 [5.6e+7| 7 | 3.6 | 0.01 [85.91 |-1.239(85.84|-1.245
s Min [4.5]4.05|37.5(4.25| 3.42 |0.0085|1.02| 3.42 |0.0085/|0.05| -12 [5.4e+7|5.95| 3.42 [0.0085] N/A | N/A | N/A | N/A
M Max |5.5]4.95(42.5|5.75| 3.78 (0.0115[1.38| 3.78 [0.0115/0.45] -8 |[5.8e+7(8.05| 3.78 [0.0115] N/A | N/A |N/A | N/A
DLbest 5.514.95(42.5|5.75| 3.42 (0.0085[1.38 | 3.42 (0.0085/0.05| -12 |5.8e+7|(7.44| 3.42 |0.0085| 85.88 |-0.976| 85.6 |-1.004
Cgmer Dy,,,..|45[405| 39 425 3.78 [0.0115(1.02] 3.78 [0.01150.45| -8 |5.4e+7(5.95] 3.78 [0.0115|85.59 |-1.547] 85.3 |-1.552
ase
Models DZmax 4.6 14.575|38.75|5.52| 3.55 |0.0115|1.055| 3.77 |0.0085|0.42| -9.35 [5.77e+7)6.21|3.4325|0.0085( 93.50 |-1.257(93.42|-1.252
Zom [5-34| 4.2 42.25/4.25[3.6775(0.0085(1.335[3.7625(0.0115(0.07| -10.5 |5.74e+7|6.61| 3.495 [0.0115]76.50 [-1.233] 76 |-1.258
E2 W,| S, | D. |H| Dk, | Df, | H, | Dk, | Df. |E.| R, | C. |Hp|Dkp | Dfp |PredZ|PredL| Z | L
Dcana 5 4 140 | 3| 28 [0.002]0.6| 2.8 [0.002]0.25| -10 [5.6e+7| 6 | 2.8 |0.002[90.57 |-0.774(89.94|-0.786
S Min [4.5| 3.6 |38.5|2.55| 2.66 |0.0017|0.51| 2.66 [0.0017]|0.05| -12 |S5.4e+7|5.1| 2.66 [0.0017| N/A | N/A | N/A | N/A
M Max [5.5] 4.4 [41.5|3.45] 2.94 (0.0023[0.69 | 2.94 [0.0023(0.45] -8 |[5.8e+7[6.9| 2.94 [0.0023| N/A | N/A | N/A | N/A
DLhm 5.5] 4.4 [41.5|3.45] 2.66 [0.0017({0.69| 2.66 [0.0017(0.05| -12 |5.8e+7(6.73| 2.66 [0.0017]91.66|-0.596[91.02-0.604
Cé)rner Lworse] 43 | 36 [40.2512.55| 2.94 10.0023|0.51 | 2.94 |0.0023/0.45| -8 |5.4et+7|5.1| 2.94 10.0023| 89.52 |-1.009|88.04|-1.069
ase
Models| Pz 4.57| 4.4 40.75|3.18|2.765 [0.0017{0.61 | 2.89 [0.0017|0.42|-8.425 |5.72¢+7|6.09| 2.87 [0.0017(99.00 [-0.796( 98.2 |-0.814
max
Dz . 5.37] 3.6 |41.5[2.73 2.85 |0.0023/0.54 | 2.795 |0.0023(0.05[-10.775[5.65¢+75.27| 2.83 |0.0023] 81.00 |-0.803( 80.1 [-0.823
more extreme corner case designs with significantly shorter
time (~16x) compared to UMC for all cases. Due to the
TABLEIV. EXPERIMENT RESULT COMPARISON WITH BASELINE normal distribution nature of GMC, it is expected that GMC
METHODS would not be able to provide the worst case unless the sample
El PredZ | PredL | Z L Run time (s) size increases by an order of magnitude or more.
s | BMGMC | 86.49 | -1.144 | 86.38 | -1.155 109.83
& [3MumC | 8804 [ -1021 [8784 [ 1472 | 9595 V. CONCLUSIONS
_| Proposed | 8588 | -0.976 | 85.6 | -1.004 12,31 The correlation between the factors impacting loss and
§ ;m SK/I/{E 3461.4218 12% gjég :gi; 19059'9853 impedance is weak. It is found that the worst/best-case loss
S Proposed | 8559 | -1.547 | 853 | -1.552 YD) happens aroutnd nomlglaldlrlnpedat{lce an(i che—versa.t The
¢ | 3MGMC | 01.95 | -1262 | 9191 | -1.253 | 10983 paperd presensd "‘1 metho dolog}(li or anlf‘“gﬁng ‘évors ~ease
& [ 3MUMC | 9350 | -1279 | 93.51 | -1.264 | 9595 impedance and loss models due to and. process
2 [Proposed | 93.50 | -1.257 | 93.42 | -1.252 12.33 variations for hlgh—speed des1gqs. The fast and efficient
< [ BMGMC | 7991 | -1.265 | 79.68 | -1.280 109.83 pro'cedure. is achieved by adapting the. ISOP framework,
& [ BMUMC | 76.50 | -1.201 | 76.09 | -1.230 95.95 which utilizes the HPO search algorithm and the ML
= [Proposed | 7650 | -1.233 | 76 | -1.258 10.17 surrogate model. Experimental results demonstrate that the
method can produce corner case design solutions within a
E2 PredZ | PredL | Z L Run time (s) few seconds and is significantly efficient compared to brute
5 [ SMGMC | 91.96 | -0.696 | 91.5 | -0.699 151.45 force uniform distribution Monte Carlo sampling. By
S SMUMC | 9224 | -0.627 § 91.75 | -0.631 80.93 employing the proposed approach, we efficiently generate
- g;/‘{’lg’l\s/fg g;'?g 'g'zgg z;'gi 'g'ggz 1?‘14:5 the corner case impedance and loss models. This enable
5 : — : — : designers to proactivel lan for potential worst-case
Qj SMUMC | 9046 | -0.956 | 89.09 | -0.992 8093 scen%lrios and I:'zake appr}z)pll')iate measuP;es to mitigate the
Proposed | 89.52 | -1.009 | 88.04 | -1.069 11.21 neeative effects
3 3IMGMC | 97.57 | -0.737 | 97.15 | -0.739 151.45 g ’
g - -
& 3IM UMC | 99.00 0.805 | 98.67 | -0.818 80.93 REFERENCES
Proposed | 99.00 | -0.796 | 98.2 | -0.814 17.77 )
_ | 3MGMC | 8354 | -0.801 | 82.66 | -0.817 | 15145 (1M, Chae, B Mutnury, . Zhu, D. Watlace, D. Winterberg, b, de
& | SMUMC | 81.00 | -0.714 1 79.93 | -0.726 80.93 leerliﬁji?l’ a.ssisfed }i]r’lver.se stiivcakri’ z:)ntimi.zati;)n ?(?r’ advance.,d :cck;n:
S | Proposed | 81.00 | -0.803 | 80.1 | -0.823 12.52 e P P packag

B.  Evaluation of Corner Case Exploration

This section describes the results for the proposed method
and compares it with the baseline methods. Two different
brute force Monte Carlo (MC) [6] sampling approaches are
used, Gaussian-distributed MC (GMC) and uniformly
distributed MC (UMC), of three million samples each. The
solutions are evaluated using the same ML surrogate model
as the proposed method.

Table IV shows the result for comparison with the
baseline methods. Our proposed method is able to achieve
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