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With the recent advances in high-speed digital circuits, modeling of interconnects 

and associated discontinuities has gained a considerable interest over the last decade 

although the theoretical bases for analyzing these structures were well-established as 

early as the 1960s. Ongoing research at the present time is focused on devising methods 

which can be applied to more general geometries than the ones considered in earlier days 

and, at the same time, improving the computational efficiency and accuracy of these 

methods. 

In this thesis, numerically efficient methods to compute the transmission line 

parameters of a multiconductor system and the equivalent capacitances of various strip 

discontinuities are presented based on the quasi-static approximation. The presented 

techniques are applicable to conductors embedded in an arbitrary number of dielectric 

layers with two possible locations of ground planes at the top and bottom of the dielectric 

layers. The cross-sections of conductors can be arbitrary as long as they can be described 

with polygons. 

An integral equation approach in conjunction with the collocation method is used 

in the presented methods. A closed-form Green's function is derived based on weighted 

real images thus avoiding nested infinite summations in the exact Green's function; 

therefore, this closed-form Green's function is numerically more efficient than the exact 

Green's function. All elements associated with the moment matrix are computed using 

the closed-form formulas. Various numerical examples are considered to verify the 

presented methods, and a comparison of the computed results with other published results 

showed good agreement. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

In recent years, the numerical modeling and simulation of interconnections and their 

discontinuities in digital integrated circuits have gained significant interest due to the 

modem development of VLSI technology. As the complexity, density, and speed of the 

integrated circuits continue to increase, signal delay and rise times are increasingly limited 

by interconnections rather than device speeds, and accurate estimations of the signal delay 

and distortion due to interconnections become crucial at virtually every level of circuit 

integration. 

To accurately characterize signal delay distortion and crosstalk noise due to 

interconnection lines, interconnects must be modeled as multiconductor transmission lines 

instead of conventional lumped circuit elements, and associated discontinuities, such as 

crossovers, bends, junctions, and vias, must also be accurately modeled. Although a 

substantial amount of work has been performed over the last three decades to characterize 

interconnections and their discontinuities in the electromagnetic community [l]-[3], most of 

these theoretical studies resulted in methods which involve high computational cost and, 

hence, are not suitable for the real-time design of CAD tools. 

To overcome this difficulty associated with the theoretical analysis, a model-based 

interconnect capacitance extraction tool is studied in the circuit community [4]-[6]. In the 

model-based approach, analytical or table-look-up models are fitted to the data generated by 

numerical simulation of EM-based techniques or experimental measurements. Although 

this approach may reduce the time to compute parameters associated with interconnects, it 

requires an impractical number of models, which limits its practical usage. Fortunately, 

even when the layout of a circuit is very complex, the number of distinct interconnections 

and their discontinuities is often very limited; furthermore, an accurate characterization of 

interconnects is required only for the critical components (path) in the circuit. Thus, if a 

method based on the electromagnetic analysis is sufficiently fast, it may be incorporated 

into a layout CAD tool. 

This thesis focuses on the discussion of computationally efficient methods for 

interconnection modeling. In particular, this thesis presents methods based on the quasi-
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static approximation to compute the transmission parameters of a multiconductor inter­

connection line and the equivalent capacitances of interconnection discontinuities embedded 

in a multilayered dielectric medium. 

1.2 The Quasi-Static Approximation 

A multiconductor transmission line in a multilayered dielectric medium does not 

support TEM modes due to the inhomogeneity of a dielectric medium [7], and full-wave 

analysis must be considered to accurately characterize hybrid modes in the transmission 

line. However, when the transverse components of the electric and magnetic fields are 

predominant over the longitudinal components, the fundamental hybrid mode becomes a 

quasi-TEM mode, in which TEM properties dominate the hybrid modes, and lines which 

support a quasi-TEM mode are called quasi-TEM lines (similarly, lines supporting a TEM 

mode are called TEM lines.) The valid range of a quasi-TEM mode is often determined 

using the dimensional analysis on the Maxwell equations [8], [9]. For most quasi-TEM 

lines, a quasi-TEM mode is valid up to several gigahertz; particularly, it is valid up to the 

cutoff frequency of the next higher (hybrid) mode. 

Since the electric field distribution of a TEM mode is identical to that of the static 

case [ch. 3, 10] and static analysis is simpler and computationally less intensive than full-

wave analysis, quasi-TEM lines are often analyzed using a static analysis, which is then 

called the quasi-static approximation. All methods presented in this thesis are based on this 

quasi-static approximation. It should be noted that although not all transmission lines are 

quasi-TEM lines, interconnections encountered in digital integrated circuits belong to quasi-

TEM lines 

1.3 Electrostatic Solution Techniques 

Under the quasi-static approximation, the analysis of interconnects and 

discontinuities is performed by solving electrostatic and magnetostatic problems. As will 

be discussed in Chapter 3, for two-dimensional problems, for example, solving for the 

transmission parameters of interconnects, there exists an analogy between electrostatic and 

magnetostatic problems; therefore, the solutions of two-dimensional magnetostatic 

problems can be obtained by solving the equivalent electrostatic problems. Furthermore, 

since this thesis focuses on the modeling of only the capacitive nature of discontinuities for 

three-dimensional problems, electrostatic solution techniques are sufficient for analyzing 

the problems considered in this thesis. 
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Electrostatic problems are governed by Laplace's equation or Poisson's equation 

with appropriate boundary conditions. Various methods have been employed to obtain the 

solution in two-dimensional space [11]-[19]. Two commonly used techniques for both 

2-D and 3-D are integral equation methods [20], [21] and the domain methods, such as the 

finite difference method (FD) [22] and finite element method (FEM) [23], [24]. 

In the domain methods, the unknown potential distribution is solved to compute the 

charge distribution over an entire domain by either directly approximating the differential 

equation with the finite difference equation (FD) or using the equivalent variational 

expression in conjunction with the method of subareas (FEM). The major disadvantage of 

the domain methods is that the unknown potential distribution to be sought is over the 

entire geometry considered, including the dielectric region; hence, it may be 

computationally inefficient for the open geometry case even with the use of absorbing 

boundary conditions to truncate the open geometry. The computational inefficiency of the 

finite difference method is improved by employing the method of line (MoL) [25], [26]. In 

MoL, all but one of the independent variables of Laplace's equation are discretized to obtain 

a system of ordinary linear differential equations. These ordinary differential equations are 

then decoupled using the orthogonal transformation matrix and solved analytically. 

Although MoL is computationally very efficient for two-dimensional problems, it is still 

burdensome for three-dimensional problems. Moreover, this method is only applicable to 

infinitely thin conductors. 

On the other hand, the conventional integral equation approach first obtains the 

Green's function for a layered medium using the image theory, which consists of rather 

slowly converging infinite series. Then, an integral equation is formulated using this 

Green's function as its kernel and is solved by employing the method of moments (MoM) 

to determine the unknown charge density on the conductor surfaces. Since unknowns in 

this approach only lie on the surface of conductors, methods based on an integral equation, 

in general, are more efficient than the domain methods. As noted in [12], for N layers, the 

expression for the Green's function would consist of a nested 7V-1 infinite series; hence, 

the evaluation of this Green's function is somewhat computationally burdensome. 

Alternatively, the free-space Green's function is used in [12] and [13] to avoid infinite 

series, but additional unknown charges on the dielectric interface and ground planes on top 

of the unknown charges on the conductor surface must be included, resulting in a larger 

moment matrix. Yet another approach to avoid an infinite summation is to solve the 
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integral equation in the spectral domain (SDA) [27], where the Green's function is in a 

closed form; however, this approach can not be applied to conductors with finite 

thicknesses, such as MoL. 

In this thesis, the spatial closed-form Green's function is used to avoid the 

evaluation of an infinite series without any additional unknowns used in the method based 

on the free-space Green's function. A closed-form Green's function for a multilayered 

dielectric medium was first introduced in [28]. This Green's function utilizes a finite 

number of weighted complex images instead of an infinite number of real images required 

for the exact Green's function. A closed-form Green's function based on a finite number 

of weighted real images is first proposed in this thesis to avoid the use of expensive 

complex operations. 

1.4 Structure of the Thesis 

As mentioned in the previous section, the technique to solve an electrostatic 

problem (Laplace's equation) plays an important role in the quasi-TEM analysis, and 

methods based on an integral equation are used throughout this thesis to solve various 

electrostatic problems related to interconnections and discontinuities. All the integral 

equations encountered in this thesis are solved using the method of moments (MoM) [29], 

[30] with pulse basis functions and point matching (delta testing), and the moment matrices 

associated with the integral equations are constructed using an analytical formula for most 

cases, avoiding numerical integration or infinite summations. 

The core of an integral equation approach is the determination of the Green's 

function. The exact Green's function for a multilayered medium is often obtained by using 

the image theory, and it consists of an infinite number of images. Chapter 2 discusses an 

efficient expression of this Green's function based on numerical approximation. This new 

expression of the approximate Green's function uses only a finite number of images; 

hence, it is in a closed form. To obtain this closed-form expression, the spectral-domain 

Green's function is first derived in this chapter, then, the spectral-domain Green's function 

is approximated with real-valued exponential functions using the method based on the 

relaxation of curve fitting. The closed-form Green's functions for a point, line, and semi-

infinite line charges are then obtained by analytically converting the approximate spectral-

domain Green's function to the space domain. 
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Chapter 3 discusses the computation of the four parameters of a multiconductor 

transmission line, viz., the capacitance matrix C, the inductance matrix L, the resistance 

matrix R, and the conductance matrix G. The capacitance matrix C is computed from the 

free charge distribution on the surface of conductors, which is determined from the 

electrostatic analysis. To compute the inductance matrix L, an analogy between 

electrostatic and magnetostatic problems for uniform transmission line configurations is 

used. Hence, the conduction surface current distribution is computed by solving the 

equivalent electrostatic problem and then used to compute L. 

The resistance matrix R is also computed from the current distribution used in the 

computation of the inductance matrix by performing the perturbation analysis on this 

current distribution. Conventionally, the resistance matrix is defined in terms of power 

loss on conductors. The resulting matrix is nondiagonal in nature and is strongly 

dependent on the current excitations used in the computation. Thus, if the resistance matrix 

is obtained before the actual current distribution on the conductor has been determined, the 

result would not be too meaningful. In this chapter, the diagonal resistance matrix is 

defined in a manner such that it is relatively insensitive to the choice of current excitations 

compared to the nondiagonal resistance matrix, which is often computed using the 

perturbation on attenuation constants [31]. In addition to losses on the conductor traces, 

those due to imperfectly conducting ground planes are also incorporated into the resistance 

matrix. 

The remaining transmission parameter, the conductance matrix G, models dielectric 

losses and can be computed from the shunt current density. Since this current density is 

related to the normal component of the electric field at the surface of a conductor, which, in 

turn, is related to the surface charge density, the shunt current density can be obtained from 

the surface charge density of the lossless system when losses due to the imperfect dielectric 

media are small. 

Chapter 4 is devoted to modeling of various strip discontinuities. In particular, a 

method to compute the equivalent (excess) capacitance of junction discontinuities, such as 

open ends, step junctions, bends, and T-junctions, are presented. Unlike other 

approaches, only one integral equation is employed to handle the above discontinuities 

instead of formulating a different integral equation for each discontinuity type. The integral 

equation is formulated in terms of the excess charge distribution to avoid the numerical 
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instabilities associated with the total charge formulation, where the integral equation is 

formulated in terms of the total charge distribution [21]. 

Chapters 5 and 6 discuss the modeling of yet other discontinuity types, vias and 

crossovers, respectively. These discontinuities differ from the ones discussed in Chapter 4 

since conductor traces in these discontinuities could be located in the different dielectric 

layers. Furthermore, for a crossover case, traces are no longer electrically connected; 

hence, the equivalent capacitance of a crossover contains a mutual term in addition to two 

self-terms, and the coupled integral equations have to be solved instead of a single integral 

equation. Again, all integral equations are formulated in terms of the excess charge 

distributions. The utilization of the Fast Multipole Method (FMM) [32]-[36] in accelerating 

the MoM-based computation of the excess capacitance of a crossover is also considered in 

Chapter 6. 

Finally, the conclusions and some future work evolving from this thesis are 

presented in Chapter 7. 
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CHAPTER 2 

DERIVATION OF THE CLOSED-FORM GREEN'S FUNCTION FOR A 
MULTILAYERED DIELECTRIC MEDIUM 

2.1 Introduction 

Among the various electrostatic solution techniques mentioned in Section 1.3, an 

integral equation approach requires the most analytical effort, mainly due to the 

determination of the expression of the Green's function for a multilayered dielectric 

medium. Fortunately, the spectral-domain expression of the Green's function has already 

been found by several authors: the expression for full-wave analysis can be found in texts 

[1], [2], whereas the expression for a electrostatic problem can be found in several journal 

papers [3]-[6]. 

The conventional approach to obtain the expression of the Green's function is the 

use of the Fourier transformation, in which the equation governing the physics of 

problems, the Helmholtz wave equation for full-wave analysis and the Laplace equation for 

electrostatic analysis, is converted to the spectral domain by transforming all but one of 

space variables. Then, the resulting equation, which is an ordinary differential equation in 

terms of the remaining one space variable, is analytically solved to obtain the expression of 

the Green's function in the spectral domain. The major bottleneck of this approach is that 

the direct analytical inversion of this spectral-domain Green's function to the space domain 

is often impossible. 

A simple but brute force approach for this inversion is the use of numerical 

integration [6], [7]. Although this approach is commonly used in full-wave analysis 

because of the complexity of the expression of the spectral-domain Green's function [7], it 

is seldom used in static analysis since this approach is computationally intensive and does 

not allow an analytical expression for the Green's function in the space domain.1 Yet 

another simple approach is to expand the spectral-domain expression using the geometric 

series. Then, an analytical expression in the space domain is found by applying the inverse 

Fourier transformation formulas to the resulting series: the Sommerfeld identity (for 2-D 

'The comparison of the CPU time used in this approach and other alternative approaches is given 
in Section 3.2.2. 
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problems) and the Weyl identity (for 3-D problems) for full-wave analysis [Chapter 2, 2] 

and the equivalent identities ((2.16a) and (2.16b)) for static analysis. The resulting 

expression in the space domain can be shown to be identical to one obtained by applying 

the image theory directly in the space domain [8]. The major disadvantage of this approach 

or equivalently the approach based on the image theory is that the resulting expression 

involves the summation of a nested infinite series; for N layers, the expression would 

consist of a nested N-l infinite series as mentioned in Chapter 1. 

In this chapter, the closed-form expression of the Green s function in the space 

domain, which does not involve any numerical integration or nested infinite summations, is 

presented. The expression of the spectral-domain Green s function is first derived in the 

following section. This expression is different than the ones given in [3]-[6], and, as will 

be shown in Section 2.3, this form of the expression is more convenient for the purpose of 

obtaining the closed-form Green s function. Then, the spectral-domain Green s function is 

approximated with real-valued exponential functions, and the resulting approximate 

Green s function is analytically inverted to the space domain to obtain the closed-form 

Green s function. 

2.2 Derivation of the Spectral-Domain Greens function 

The cross-sectional view of the general geometry of a multilayered medium is 

shown in Fig. 2.1. An arbitrary number Nd of nonmagnetic lossless dielectric layers are 

backed by two optional ground planes with possible top or bottom locations. All dielectric 

layers and ground planes are assumed to be infinite and uniform in the xz plane. 

Consider a unit point charge located at the /nth layer at (x0, y0, z0) (Fig. 2.2). The 

three-dimensional Green s function G is the potential due to this point charge and 

satisfies the following Poisson s equation: 

V V>(z, y, zk,, %,.%<,) = - W ( z - V % y - %,)%% - z j f 2.1) 
e(y) 

To assure the unique solution to the above equation, G has to satisfy the appropriate 

conditions at the boundary: G is constant at the surface of the ground planes, and G 

and the normal components of the displacement field must be continuous across the 

dielectric interfaces. Noting that the dielectric medium is uniform in two directions, we can 
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Optional Top Ground Plane 

Optional Bottom Ground Plane 

Figure 2.1. The cross-sectional view of a multilayered dielectric medium. 

y=dn 

y=dn-i 

y=dn-2 

y=dm 

y=dm-l 

y=dm-2 

y 
A 

Figure 2.2. The geometric configuration used to determine the spectral-domain expression 
of the Green's function. 
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represent the Green's function and the point charge in the spectral domain in terms of their 

transforms in the x- and z-directions. The space-domain and the spectral-domain Green's 

functions are then related by 

+oo+oo 

G3%,y,̂ ,,y,,z.) = - W j^^^^)-^--)c^(%y,^,^z.)(2.2a) 

+OO-H» 

where G3D (a, y, fi\x0, y0,z0) is the 3-D spectral-domain Green's function and a and /J are 

the transform variables associated with the x- and ^-directions, respectively. Then, the 

corresponding equation for (2.1) in the spectral domain is written as 

-2L.-«2-/)2 G3%,y,jS|z,,y,,zJ = — % y - % , ) (2.3) 
dy 

The general solution of the above equation is given by 

e(y) 

my.y|t) = ̂ 7 + ̂  y = V ^ F (2.4) 

where the first subscript m denotes the layer where the source is located, whereas the 

second subscript n will be used to denote the layer where the Green's function is evaluated. 

A and B are unknown expressions to be determined. Note that em appears in (2.4) unlike 

(2.3), where en appears. 

An identical expression can be obtained for the 2-D spectral-domain Green's 

function G2D{y,y\p0)by Fourier transforming G2D{x,y\x0, y0) in the ^-direction with the 

transform variable y assuming the layers are uniform in the x-direction. Furthermore, since 

the unknown coefficients A and B are to be determined using the boundary conditions only 

in the y-direction, it is easily seen that the expressions for G and G must be identical 

under these Fourier transformations. Thus, in what follows, the superscripts for the 

spectral-domain Green's functions are omitted. 
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Applying the boundary conditions at the dielectric interfaces and ground planes, 

(2.4) can be written as 

% ^ ) = ̂ t ( ^ + & n + l ^ ^ ^ ) y%y. (2.5a) 

where 

n—\ m 

<n=<«n^+i A™=A™ n ^ - 1 (2-6) 
j—m j=n+l 

Here, /} ;- and 7]y are the reflection and transmission coefficients. i"}>7+i takes the value 

of 0 or -1 if the ;'th layer is a half space, or the (/+l)th layer is a ground plane, respectively. 

fnn+i is the generalized reflection coefficient, which is the ratio of the amplitudes of the 

potentials at y = dn due to the image charges located above and below v = dn. A^m and 

A^m are unknown expressions to be determined. The superscripts + and - are used to 

denote the cases for y > y0 and y < y0, respectively. 
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Using the facts, at y = y0, that (2.5a) and (2.5b) must be equal and that the normal 

component of the displacement field must be discontinuous by the magnitude of the charge, 

we can obtain expressions for A^ m and A^m as follows: 

<m = ̂ [^+C_i^^-'^)] (2.10a) 

^m=M^[^ + r^^^%-^)] (2.10b) 

where 

i - 1 
(2.11) 

The complete expression of the spectral-domain Green s function has now been 

derived. In (2.5a), A* „ can be physically interpreted as image charges (and the actual 

charge when m is equal to n) located below the observation point y, whereas the product of 

A^n and fnn+l can be interpreted as image charges located above the observation point. 

A similar interpretation can be given to (2.5b). 

It is interesting to note that all of the above equations have the following form: 

where c,, c?, and c3 are some constants which satisfy 0 < C2fk-\ (Y)e^3, ^ L and the 

expression of fk-\{y) is in the same form as fk{y) for k > 1 and is a constant function for 

k = 1. The value of k depends on the number of dielectric layers; for instance, for TV 

dielectric layers k takes values from 1 to N. Since 0 < c2fk-i(Y)e^3 ^1 for all k, the 

geometric series can be used to expand f^iy), and the resulting series is a nested N-\ 

infinite series. The entire expression of the spectral-domain Green s function can then be 

written in terms of this series, and each term of the series can be conveniently inverted to 

the space domain using the integration formulas (2.16a) and (2.16b) to be given in the 

following section. It can further be shown that the resulting expression of the Green s 

function in the space domain is identical to the one obtained by using the image theory. 

Hence, the exact expression of the Green s function in the space domain generally consists 

of a nested infinite series. 

M, m - i-r, m,m-V m,m+le 2y(4n-,-4J 
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In the following section, the closed-form spatial Green s function, which avoids 
this nested infinite series, is derived based on the expression of the spectral-domain 
Green s function obtained in this section. 

2 .3 Derivation of the Space-Domain Greens function 

In this section, the closed-form expression of the Green s function in the space 
domain is obtained by applying the exponential approximation to the spectral-domain 
Green s function. To obtain the closed-form expression of the Green s function in the 
space domain, the spectral-domain expression of the Green s function derived in the 
previous section is first rearranged by factoring out all y and y0 dependencies as follows: 

2eTO7v 

+A^(y, m, „)gr(-f+>'") + 4"(y, m , n ) / ( - ) ' - ^ + ^ - ' ) ) y > y, (2.13a) 

G ( y , y | t ) = - ^ ( A T ( y , m , « ^ 

2̂ m7 

+ ^ ( y , ^ 4 ^ - ^ ^ ^ - ' ^ ^ + ^ ^ y ^ ^ ^ ' ' - ' ^ yS%, (2.13a) 
where 

n-\ 

KUY,m,n) = Mmfnin+lY[sfj+i 

4"(7. m<«) = ^m^n,n+/m.m-l]~[^;+ 

j=m 

n-\ 
c+ 

1 
j=m 

n-\ 
KZ(y,m,n) = Mm'Y[sjj+l 

j=m 

n-\ 
Kt(Y, m, n) = Mmfmtm_x J J # ; + i (2.14a) 

j=m 
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m 

Kf(y, m, n) = Mmfm>m+1 f j ^ y - i 
j=n+\ 

m 

K2-(y,m,n) = MmY[sjj-i 
j=n+\ 

m 

K^iy, m, n) = Mmfm>m+1frtjn_[ ^ % ^ _i 

m 

K^(y,m,n) = Mmfn<n_l J p L - l (2.14b) 
j=n+\ 

The determination of the closed-form spatial Green's function can now be preceded by 

approximating the above four coefficient functions Kf(y,m,n) using exponential 

functions. It is important to mention that although Kf(y, m, n) is dependent on m and n, it 

is not a function of the source and observation locations, y and y0; hence, the 

approximation can be performed without any prior knowledge of the geometry of the 

conductors. 

One physically intuitive approach to approximate the potential due to a charge in the 

layered medium may be the use of a finite number of weighted image charges in the 

homogenous medium, which is equivalent to approximating the coefficient functions 

Kf{y,m,n) with exponential functions. These weighted images can be either complex or 

real depending on whether complex-valued or real-valued exponential functions are used in 

the approximation. The equivalence between the weighted image charges in the space 

domain and exponential functions in the spectral domain will be shown later in (2.18a) and 

(2.18b). 

In electromagnetic analyses, the complex-valued exponential functions are often 

used for pole-zero modeling of signals, such as an electromagnetic-scatterer response. The 

least-square formulation of this exponential approximation results in nonlinear equations 

and can only be solved by iterative methods, such as gradient descent procedures or the 

Newton method. Due to the computational inefficiency of these algorithms, some other 

suboptimal noniterative techniques are proposed: the least-squares Prony method and the 

generalized pencil-of-function (GPOF) method [9], [10]. These suboptimal methods are 
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used to obtain the closed-form Greens function for full-wave analysis [11]-[13]2 and 

further applied to obtain the closed-form Greens function for electrostatic analysis [8]. 

Although these algorithms are noniterative, their computation involves matrix inversions 

and a polynomial factoring or a solution of the generalized eigenvalue problem, which still 

can be considered as computationally inefficient. 

Fortunately, the four coefficient functions Kf(y,m,n) in (2.13a) and (2.13b) are 

nonoscillatory and smooth functions of y; hence, each coefficient function can be 

sufficiently approximated with real-valued exponential functions instead of complex-valued 

exponential functions, avoiding computationally expensive complex operations. The real-

valued exponential approximation method described in [14] is employed in this thesis. The 

method is based on the relaxation of curve fitting, and the details of the procedure are given 

in Appendix A. Although this method is simple and iterative in nature, it converges to 

reasonable accuracy in a few iterations and requires much less computation time as 

compared to those for the previously mentioned methods. 

It can be seen that a pole exists at y= 0 for a medium with both top and bottom 

ground planes, and Kf(y,m,n) can no longer be accurately approximated with exponential 

functions. Thus, a special treatment is required for this case to extract the pole from 

K-~(y, m,n). In the following subsection, the closed-form Green s function is obtained for 

cases with no ground planes or only the bottom ground plane, and the subsequent 

subsection discusses the derivation of the Green s function for a case with both top and 

bottom ground planes. 

2.3.1 Closed-form Greens functions for geometries without any ground 
planes or with only the bottom ground plane 

When the dielectric layers are not backed by both top and bottom ground planes, the 

four coefficient functions Kj~(y,m,ri) do not have any poles; furthermore, they are 

nonoscillatory and smooth functions of y. Hence, they can be approximated using the 

exponential approximation method discussed in Appendix A as follows: 

"Strictly speaking, the closed-form Green s function does not exist for a full-wave case since y and 
y0 dependencies cannot be removed from the coefficient functions before the approximation. 


