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This dissertation addresses model-order reduction techniques for use in analog cir

cuit simulation. Efficient yet accurate modeling and simulation methods of circuits and in

terconnects are developed. Particularly, charge carrier diffusion in p-n junction devices 

and wave propagation in frequency-dependent electromagnetic systems are solved.

Recently, Pade synthesis has been applied to analyze large, linear networks, and an 

efficiency of two- to three-orders of magnitude in speed over conventional methods has 

been obtained. The miniaturization of the devices and the increase in operating frequency of 

integrated circuits have placed more emphasis not only on the efficiency of the simulation 

methods, but also on the accuracy of the synthesis techniques. It has become increasingly 

apparent that the traditional, equivalent circuit representations are not adequate to deal wiih 

the intricate physical effects that become more prominent with the reducing dimension, 

growing packing density, and increasing frequency of operation. Therefore, methods that 

are solely based on Pade synthesis cannot guarantee the accurate simulation of complex 

networks. Advanced simulation techniques and powerful models are indispensable in the 

design of future systems.

The basic goal of this dissertation is to extend the use of order-reduction techniques 

as accurate methods for analyzing complex electronic systems. The theoretical and practical 

aspects of moment-matching, Krylov subspace-based methods, and rational approxima

tions techniques are studied. The moment-matching techniques are directly applied to p-n 

junction device equations to accurately model the carrier dynamic in the junctions. A robust 

approximation technique that uses Householder orthoganalization techniques is developed 

to generate macromodels of electromagnetic systems, such as frequency-dependent coupled 

transmission lines. A pole-clustering technique with inverse distance-measure criterion is
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used to further reduce the models. This allows the efficient accurate simulation of fre

quency-dependent coupled transmission lines characterized by scattering parameters and an 

optimal reference system. The heterogeneous reduction techniques are woven into a unified 

method by using network partitioning techniques. Recursive convolution is used to 

speedup the transient simulation. The method does not suffer from aliasing or round-off 

errors caused by nonband-limited frequency responses, nor by numerical transforms of a 

large number of points, respectively.
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CHAPTER 1

INTRODUCTION

1.1 Background

Advances in VLSI circuitry have brought about an enormous growth in the scale 

and complexity of integrated circuits and electronic packages. Integrated circuits are now 

being produced with millions of transistors, and electronic packages are being designed 

with thousands of interconnects. The fabrication and test of prototypes is very costly and 

time consuming, and computer simulation is becoming more essential to determine the per

formance of the VLSI circuits and the packages before they are built. The increase in circuit 

size makes performance verification of current systems using standard simulators such as 

SPICE [1], ASTAP [2], and Saber [3] computationally impractical. In addition, the reduc

tion in size of the devices and interconnection structures requires powerful modeling and 

advanced capabilities of synthesis techniques in order to analyze them accurately. Higher- 

order and previously neglected effects must be considered. Device models need to be valid 

over a wide frequency range [4], [5]. The interconnects’ frequency-dependent behaviors 

become more important in determining the performance of systems. As a result, the de

mand for alternate CAD tools that can efficiently and accurately analyze current complex 

systems has generated the search for new methods of circuit simulation.

1
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The complexity of new technology and the increase in clock speed directs the search 

for modeling and simulation toward more accurate methods, whereas the size of current 

VLSI circuits push the approach away to less accurate approximation methods. Such con

flicting requirements also arise in signal integrity analysis of high speed systems. Often, 

detailed analyses of large interconnect networks at chip, board or system levels need the 

analyses of complex interconnect networks that consist of inhomogeneous media, solid and 

perforated power planes, vias, bends and pads, nonlinear drivers and terminations. A typi

cal network representation of a signal path in an electronic package is shown in Figure 1.1.

C9

C3 T

H(s)
C6 T  C7 7k :C10

R2

R, L, C, G C8 R4

R1

thin "film wire bond power Lejj  loadsignal tracepin & via via

Figure 1.1: Circuit model of an interconnect network.

All Rj’s, Cj's, and f s  in Figure 1.1 are resistance, capacitance and inductance ma

trices of the lumped system, respectively. The R(jco), L(jco), C(jco), and G(jco) are resis-

0
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tance, capacitance, inductance, and conductance per-unit-Iength of the distributed system, 

respectively. The H(s) is a matrix of fundamental parameters in analytical or tabular form 

characterizing nonuniform interconnects. The impulse response of such a network is so 

complex that a detailed analysis using conventional methods is time consuming. The simu

lator needs to be capable of dealing with distributed, frequency-dependent networks and 

systems characterized by sampled data. The direct method of analyzing a system using nu

merical transforms such as the FFT and nonlinear convolution is extremely time consum

ing. The traditional methods require low-pass filtering of frequency-domain data that are 

nonband limited. For example, the reflections and couplings of a coupled interconnect sys

tem approaches unity as frequency tends toward infinity.

Although recent circuit simulation techniques, such as asymptotic waveform 

evaluation (AWE) [6]-[ 10], complex frequency hopping (CFH) [11 ]-[ 12], and Pade via 

Lanczos (PVL) [ 13]-[ 15] reduce computational complexity, the stability and accuracy of 

these approaches when applied to complex networks still remain issues of concern.

1.2 Overview

This dissertation focuses on developing a more accurate and efficient methodology 

of model-order reduction techniques for circuits, interconnects and package simulation. The 

research investigates the application of model-order reduction techniques for the solutions 

of the equations describing circuits, devices, and electromagnetic systems. This dissertation 

attempts to bring together the two conflicting requirements of CAD tools, efficiency and 

accuracy, by improving the accuracy and robustness of model-order reduction techniques. 

The dissertation develops the methodology for the construction of pole-zero models to rep

resent complex effects of distributed systems or system responses obtained from field

3
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solvers and measurements. The models are compatible to conventional simulators and can 

be integrated to estimate the response of a system.

The reduced-order model of a system is obtained by directly approximating the so

lution of the partial differential equations or the response of the system in a very efficient 

way. The reduced-order model method accurately represents the dynamics of complex 

systems, such as carrier diffusion in p-n diode and wave propagation in electromagnetic 

systems, that are difficult to account for using circuit elements and analytical models. The 

simpler, low-order models are analyzed substantially faster.

Most methods generate a reduced model by attempting to retain the leading mo

ments or the dominant eigenvalues of the system and calculate the remaining parameters of 

the low-order model in such a way that its response to certain inputs is a close approxima

tion to the response of the original system. For example, Pade approximation techniques 

[6]-[ 15] are based on matching the moments of the response of the system to extract the 

dominant poles. An attractive feature of these approaches is that they retain the physical 

meaning and require much less computation.

A simplified model of a large network can also be obtained by finding an optimum 

approximation of the original system without the constraints of matching the moments or 

the locations of the eigenvalues. The method involves a constrained curve-fitting that mini

mizes the error between the original model and the reduced-order model. Most of the com

putational procedures usually require high computational efforts and can be very costly for 

applications in circuit simulation. Although the method suffers from the drawback that the 

physical significance of the reduced variables is lost, the approach is more general and can 

give better approximations than single and multipoint, moment-matching methods. The re

cent works on the direct representation of lossy transmission lines using transfer functions 

have regenerated considerable interest in the possibility of direct determination of the poles 

and zeros from the time-domain or frequency-domain response [16]-[20]. The characteris

tics of the transmission lines can be approximated using a stable rational function in a pole-

4
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residue or pole-zero form or as a ratio of polynomials. Once the poles and zeros are ob

tained, the model can be reduced by using pole-clustering techniques.

In Chapter 2, circuit simulation techniques are reviewed. Some of the recent meth

ods that are proposed to improve the speed of circuit simulation are discussed. The basic 

ideas that made these methods different from the conventional methods are described and 

their merits will be examined.

In Chapter 3, Pade approximation using the moment-matching technique and Kry

lov subspace-based methods, such as the Amoldi algorithm and the Lanczos algorithm, are 

studied. The two methods are compared and the strengths and the weaknesses of the meth

ods are presented. Examples are given to show their similarities and differences.

In Chapter 4, asymptotic waveform evaluation technique is applied to p-n junction 

devices. The AWE is used to accurately model the transient behavior and high frequency 

characteristics of junction diodes. It is demonstrated that the method can accurately analyze 

the diode forward and reverse recovery effects and high-frequency behavior of a diode. 

This phenomena cannot be analyzed in conventional circuit simulation. An example of di

ode switching circuit is given and the results are compared with SPICE and other published 

simulations.

In Chapter 5, a robust rational interpolation technique is presented for synthesizing 

electromagnetic systems over a wide frequency range. Rational synthesis is a very effective 

technique for generating a finite-order model of complex, infinite-dimension systems. The 

method is used to obtain rational approximations for systems with relatively complicated 

transfer functions having a large fluctuation in the waveform. The method is a curve-fitting 

procedure based on the Householder QR orthogonalization to obtain a very accurate solu

tion for the coefficients of a constrained stable function that minimizes the error between 

the original model and the approximate model. The pole-clustering technique is used to 

further reduce the model of the intermediate, large-order system obtained through rational 

approximation of the original system. For most practical cases, the order of approximation

5
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can be selected to directly obtain a reduced model. The method can be used with complex 

systems described by partial differential equations or systems expressed by sampled data. 

General transmission lines and complex interconnect systems are analyzed using this 

method. The simulation results are compared with results using other methods.

In Chapter 6, the rational synthesis is used to analyze frequency-dependent coupled 

transmission lines. Scattering parameter formulations are used to characterize the transmis

sion lines. By using an optimal reference system that makes the scattering parameters 

smooth and simpler to approximate, low-order rational functions are generated. These low- 

order rational approximations of the scattering parameters are used to obtain the time- 

domain response of the coupled transmission line system for arbitrary excitation using re

cursive convolution. The method does not suffer from aliasing or round-off errors caused 

by nonband-limited frequency-domain data, or by numerical transforms of a large number 

of points, respectively. The low-order frequency-domain modeling of a transmission line 

system using scattering parameters and appropriate reference system combined with recur

sive convolution is used to reduce the simulation time.
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CHAPTER 2

REVIEW OF CIRCUIT SIMULATION 
TECHNIQUES

2.1 Introduction

Circuit simulation programs are important tools in the design and testing of 

electronic systems. They provide an inexpensive and fast means of verifying and 

optimizing designs without building prototypes. Prototypes require too much time to build 

and test, and cannot accurately represent all the electrical parameters of the actual products. 

Circuit simulation provides the timing details of the circuit, as well as signal levels. In 

addition, circuit simulation is advantageous over actual measurement because one can probe 

any node in a network and observe the response in time or frequency domain without 

overloading the circuit.

In the following sections, general circuit simulation programs are reviewed. Three 

approaches of circuit simulation: direct method, waveform-relaxation method and Pade 

synthesis are discussed. The modeling and simulation of distribute systems are also 

reviewed.
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2.2 Traditional Simulation Techniques

Conventional circuit simulators such as SPICE, ASTAP, and Saber [ 1 ]-[3] are 

general purpose simulators that can provide time-domain transient analysis, dc solutions, 

frequency-domain ac analysis, sensitivity analysis, and noise and distortion analysis. The 

algorithms of these simulators are based on the construction of differential equations by 

representing electronic devices with analytical functions. The modified nodal admittance 

(MNA), a matrix formulation used by circuit simulation [21], matrix equation of any 

lumped network can be written using Kirchoff current and voltage laws and the constitutive 

or branch equations of each element as

C ~  v(r) + Gv(t) + F(v(r)) = e(t) (2.1)
dt

where v(r) is a vector of nodal voltages appended by an independent voltage source current, 

linear inductor current, nonlinear capacitor charge, and nonlinear inductor flux; F(v(t)) is a 

function describing the nonlinear elements in the network; e(t) is the independent source 

vector; and C and G are matrices describing the network. The nonlinear differential

equations in (2.1) are converted into algebraic equations using stiffly stable integration

methods. The multistep integration formula of the form

p  p

Xn+1 = X a'-r',-' + F, 2 1  ) (2.2)
i = 0  1=1

is often applied to Equation (2.1). The xk’s  are the approximated solution at time tt, and 

hk = tk -  tk_y is the discretization time step, with a{'s, b{’s and p chosen to satisfy a certain 

relationship between the accuracy and the stability within the order of the formula [22], 

[23], The nonlinear algebraic equations are solved iteratively using the Newton-Raphson 

method. For n nonlinear equations in n unknowns defined by

/(.r,,.r2, . . . ,.t„) = 0, i=l,2,3...... n (2.3)

a new iterate .t*+1 at time tn can obtained from past values of .v„ solving

8
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a - 4)

where J(xj ) = df(xj )/dxj is the Jacobian matrix. Finally, at each iteration point a system of 

linear equation of the form

Ax = b (2.5)

is solved.

Although this algorithm leads to accurate solutions, the computing time grows 

super-1 inearly with circuit size, practically limiting its applications to small-sized circuits. 

Recently, a number of specialized circuit simulators have been developed by abandoning 

one or more of the above paradigms in order to speed up the analysis. Simulation 

programs, such as MOTIS [24], SPLICE [25], DIANA [26], [27], and ILLIADS [28] are 

among the few new simulators that traded the accuracy of their analyses for computational 

speed [29].

2.3 Waveform-Relaxation Techniques

The main reason why the conventional technique is inefficient for large circuits is 

that the solution time grows super-linearly with the size of the problem. Methods based on 

tearing, decomposition and partitioning techniques have improved the speed of simulation 

while maintaining the accuracy of the solutions [29]-[31]. A relatively new simulation 

algorithm, known as waveform relaxation [32]-[34], analyzes large circuits by partitioning 

them into manageable pieces to reduce simulation time. The method takes advantage of the 

unique properties of MOS circuits that transistors switching activity tends to propagate 

through the circuits in unidirectional waves. While some switches are generally in 

transition, others can be idle. The gates of MOS devices also have little effect on the 

portions of the circuit connected to their inputs. The delays on the transmission lines act as 

natural boundaries for the partitions [35]. The waveform-relaxation algorithm, based on

9
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these observations, partitions the circuit into small pieces to take advantage of these latency 

behaviors. Each piece is analyzed independently following the direction of signal 

propagation. This partitioned analysis is repeated a number of times to gradually take into 

account the full interaction among the subnetworks.

The relaxation can be applied at different levels. When applied to the linear system 

of Equation (2.5), the Gauss-Jacobi and Gauss-Seidel algorithm gives

D.xk+l =b — (L + U).xk (2.6a)

(L + D)xt+l = b -  Uxk (2.6b)

respectively. The matrix A is decomposed into A=L+D+U, where L, D, and U are 

nonsingular, strictly lower-triangular, diagonal, and strictly upper-triangular matrices, 

respectively. While the method has extended the size of circuits that can be simulated to

thousands of transistors and interconnects, the method is limited to certain classes of

technology and falls short in satisfying the current demand.

2.4 Modeling and Simulation of Distributed Systems

Conventional circuit simulators, such as SPICE, ASTAP and its derivatives such as 

RELAX [34] are primarily discrete or lumped-element simulators. The transient simulation 

of high-speed analog and digital integrated circuits requires the analysis of distributed 

components. The interconnect structures, such as wirebonds, tape automated bonds 

(TAB’s), pins, connectors, and pads, have to be represented as distributed components to 

determine the performance of the systems. The interconnect discontinuities, dispersions, 

conductor and dielectric losses can be accurately represented by transmission line systems 

rather than by equivalent circuits. The accurate determinations of losses, delays, and noise 

on interconnects in high-speed integrated circuits requires transmission line models.

10
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Arbitrary transmission lines are distributed systems, unlike lumped networks, and 

cannot be described by the ordinary-differential equations in (2.1). The voltages and

currents of an RLCG transmission line system are functions of time and space. They are

infinite-order systems described by coupled partial-differential equations, known as the 

telegrapher’s equations given by

-^-v(x,t) = -R  i(x,t) -  L-^-i(x,t)

I  d (2’7)
—- t'(x,t) = —G v(x,t) -  C— v(x,t)
o!r dt

where R, L ,G  , and C are the resistance, inductance, conductance, and capacitance nxn

matrices per unit length, and v(x,t) and i(x,t) are n x l  voltage and current vectors, 

respectively.

The method of characteristics can be used to transform Equation (2.7) into two 

ordinary differential equations using the equations

dx 1
dt J L C

*  , a 8 )

dt J L C

as forward and backward characteristic curves, respectively [36]. By combining Equations

(2.7) and (2.8), the two differential equations along the forward and backward 

characteristic curves are given by

( IT )d i(x ,t)+  Ri(x,t) + — G v (x J )  dx + d  v(.r, t) = 0
K ,C j

_  (2'9)
Ri(x,t) ~ J ~  G v(x,t) dx + d  v(x,t) = 0

respectively.

The method of characteristics was first used to simulate lossless transmission lines 

in time domain by Branin [37]. For lossless transmission line systems, where R=0 and 

G=0, and distortionless line systems, where R/L = G/C, Equation (2.9) can be directly

1 1
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integrated [38]. The method can be used to analyze general uniform lossless n-coupled 

transmission lines in [39] and [40]. The inductance, L, and the capacitance, C, matrices are 

diagonalized and the set of 2n uncoupled ordinary-differential equations are solved in a 

similar fashion as a single line case. However, general transmission lines are solved by 

numerical techniques; therefore, the analysis of lossy lines is very involved [41]. The 

method cannot be easily applied to analyze frequency-dependent behaviors such as skin 

effects and dielectric losses.

Traditionally, a transmission line is modeled by cascading a large number of 

resistors, inductors and capacitors. The method introduces a large number of nodes that 

increase the simulation time substantially. This lumped-element circuit model introduces 

excessive ringing and can give accurate results only within a limited frequency range. The 

lumped-element circuit models must be supplemented to account for frequency-dependent 

effects in transmission lines.

The most general approach for the simulation of transmission lines is based on the 

convolution method. The impulse responses of transmission line systems are used to solve 

the nonlinear convolution equations governing the interconnects and nonlinear drivers and 

terminations [42]-[44]. The convolution requires the inverse transforms and band-limit 

filtering of a large number of points in order to minimize aliasing and unwanted ringing 

[45]. This method is computationally expensive. In the recent version of SPICE, SPICE3 

convolution formulas for single lossless transmission lines and simple lossy transmission 

lines, with constant R, L and C, are used to reduce simulation time [46]. These analytical 

models are not general and do not consider frequency-dependent phenomena such as the 

skin effect.

Recently, in order to be able to analyze arbitrary interconnect structures with 

nonlinear loads, research has been directed to integrate the distributed electromagnetic 

networks and circuit simulations into one platform. The approach can be categorized in two 

groups. The first approach is to extend the existing electromagnetic techniques by
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introducing the concept of a lumped-device model to handle circuit components that 

represent passive and active devices [47]-[50]. Resistors and capacitors are implemented as 

three-dimensional block resistors and parallel-plate capacitors with selected conductance 

and the permittivity of the regions. The semiconductor devices are implemented either as 

analytical grid models or by using the concepts of voltage-variable resistors and capacitors. 

Although this method performs the most accurate simulation, it is limited to very small 

systems. The second approach concentrates on integrating the characteristic parameters into 

a circuit environment. The fundamental parameters, such as impedance, admittance or 

scattering parameters, are directly used in circuit simulation to solve the terminal voltages 

and currents in networks using convolution. The convolution and the numerical transform 

required to obtain the response of a system are time consuming. An alternative approach is 

to extract equivalent circuit representations directly from simulated or measured time- or 

frequency-domain data [51]-[54]. The time-domain approximation of an impulse response 

involves costly optimization and the method does not guarantee physically meaningful 

positive values for the circuit elements. Often, the automatic extraction of circuit element 

values fails to give useful information to practical problems [52].

Recently, methods that are based on Pade synthesis have been applied to improve 

the simulation efficiency of distributed networks. AWE, CFH and PVL, have been used 

successfully to analyze interconnect systems [9]-[ 12], [55]-[59]. Typical efficiency gains 

of two- to three-orders of magnitude over traditional methods have been reported. These 

methods are reviewed in the following section.

2.5 Pade Synthesis

The direct analyses of VLSI circuits and electronic packages, as discussed in 

Section 2.2, are computationally expensive. The simulation of such systems, however, can

13
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be carried out less expensively by replacing the high-order systems with simplified low- 

order systems that closely approximate the original systems. Pade approximation can be 

used to generate these low-order approximations.

In 1948, Elmore [60] proposed an expression for approximating the time at which 

the transient step response would reach 50% of its final value of monotonic waveforms. 

The waveforms are restricted to monotonic unit step responses, and initial conditions are 

not allowed. The timing delay, known as Elmore delay, TD obtained in terms of the first 

moment of the derivative of the step response v(t) is

This expression represents the first moment, or mean, of the impulse response, 

h(t), provided that the circuit is initially in equilibrium, i.e., the capacitors are discharged. 

Rubenstein, Penfield, and Horowitz [61] applied the Elmore delay as a dominant time 

constant approximation to determine the nominal delay in linear RC-tree circuits, which are 

networks consisting of resistive chains with capacitance-to-ground at each node [62], [63]. 

The approximation was refined by developing second-order RC-tree methods as an 

extension of the previous RC-tree methods. A transfer function with two poles and one 

zero,

is used to approximate the voltages at the nodes. Zukowski [64] extended the method to a 

general class of RC-trees. He derived rigorous bounds on the behavior of the digital MOS 

circuits using RC-trees. The RC-tree approaches to timing estimation have been used 

successfully for timing analysis and timing simulation of low- to mid-frequency MOS 

digital-integrated circuits. The MOS gates are modeled as linear capacitors and the channels 

as linear resistors that are determined as functions of process parameters and voltage 

changes which are to appear across the gates. The interconnects are also modeled by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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RC-tree networks [65], While extremely large circuits can be analyzed with such an 

approach, crucial information about their behavior is often lost because very simplified 

circuit models are used to predict circuit responses. The method considers only one or two 

moments of the impulse response of the system and only works for monotonic waveforms.

2.5.1 Moment-matching methods

The RC-tree method has limited applications. The method cannot model capacitive 

coupling or resistance-to-ground effects. Recently, asymptotic waveform evaluation 

(A W E), method based on the moment-matching technique has been used for the analyses 

of large linear networks and interconnect structures [9]-[12], [55]-[59]. Unlike the RC-tree 

method, AWE handles more complex networks, non-tree structures and inductances 

without increasing computational complexity.

McCormick and Allen [6] showed that the moments of an electrical network could 

be used to form a low-order approximate response. They developed a moment 

representation method to simplify the analysis of linear circuits and interconnects. Pillage, 

Wolff and Rohrer [7] used a form of the RLC network equations to generate the network 

moments in an efficient manner and extracted an approximation set of network poles. They 

demonstrated that the resultant low-order model was a generalization of the simpler one or 

two-pole, RC-tree approximation method. Typical efficiency gains of two to three orders of 

magnitude speedup over traditional simulation techniques have been reported. The accuracy 

of the analysis can be improved by increasing the number of poles used in the 

approximation.
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2.5.2 Krylov subspace-based methods

Recently, iterative methods have become standard tools for solving large linear 

systems. Many iterative methods are based on Krylov subspace methods which are 

particularly more effective for partial eigensolution, for determining few eigenvalues and 

the corresponding eigenvectors of a matrix [66]-[68].

The use of Krylov subspace-based methods to obtain dominant eigenvalues has 

various advantages. The Krylov subspace-based methods avoid the magnification o f the 

dominant eigenvector component that is inherent in the moment-matching method by using 

a set of vectors that describes the same vector space as the moment matrix but are mutually 

orthogonal. This method allows the extraction of the desired number of poles to capture the 

dominant features of the original input-to-output mapping. The Krylov subspace-based 

method, unlike the moment-matching method, provides a methodology to measure the 

error between the original model and the reduced-order model. The link between the 

Lanczos method and the moment-matching analysis has been studied in [67]. Recent papers 

[13]-[15], [59] have applied the Lanczos process for linear network simulations.

The synthesis of transmission lines with long delays are problematic. The selection 

of expansion points that guarantee stable Pade approximations of highly coupled lossy 

interconnects with complex impulse responses is heuristic. In an effort to overcome some 

of these concerns, the direct representation of lossy transmission lines using the transfer 

functions obtained from curve-fitting of time- or frequency-domain response has 

regenerated considerable interest [19], [69]. Thus, the poles and zeros of the transmission 

line systems are directly determined from the transfer functions.

16
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2.6 Rational Approximation Techniques

A simplified model of a large, lumped and distributed network can be obtained by 

finding an optimum approximation, in some sense, of the original system without the 

constraints of matching the eigenvalues or the moments. The method involves a constrained 

curve-fitting that minimizes the error between the original system and the approximation. 

The approach is more general and can give better approximations than the single-or multi

point moment-matching methods. The recent works on the direct representation of lossy 

transmission lines using transfer functions have regenerated considerable interest in the 

possibility of direct determination of the poles and zeros from the time- and frequency- 

domain response. The characteristics of the transmission lines can be approximated using a 

stable rational function in a pole-residue or pole-zero form or as a ratio of polynomials 

[18], [19], [69]-[71]. Once the poles and zeros are obtained, a reduced-order model can be 

obtained using one of the standard techniques for an efficient time- or frequency-domain 

simulation.

The computational procedure to determine a rational approximation requires the 

solutions of ill-conditioned systems. The accurate calculation of poles and zeros often 

involves costly optimization [73],

17
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CHAPTER 3

PADE ANALYSIS VIA MOMENT-MATCHING 
AND KRYLOV SUBSPACE-BASED METHODS

3.1 Introduction

The idea of obtaining a Iow-order model from a high-order linear system character

ized by a set of differential or difference equations is quite mature. It has been long recog

nized as an important tool to reduce computational complexity and simplify large systems. 

The topic has been studied extensively in the control and system fields for many years, and 

consequently, a wide variety of approaches has been proposed [74]-[75].

Recently, asymptotic waveform evaluation (AWE) and its derivatives, which are 

based on moment-matching methods, are successfully used for the simulation of large- 

lumped and distributed systems. The reduced-order models of large-scale systems have 

been used to generate fast-timing analyses of PCB and MCM interconnects. A typical effi

ciency gain of more than two orders of magnitude speedup over traditional simulation tech

niques has been attained [6]-[10], [55], [56].

AWE is a form of Pade approximation that uses the moment-matching method for 

extracting dominant poles and zeros of linear(ized) networks. These dominant poles and 

zeros form low-order models that can be used for efficient transient-response
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approximations. The Iow-order models are constructed by first expanding the networks 

transfer functions by the Taylor series, and then matching as many coefficients as neces

sary in terms of low-order approximate functions. Recently, AWE technique and its de

rivatives that are based on moment-matching methods have been applied to circuit simula

tion successfully.

The increase in signal and clock speed has put an additional demand for accurate 

simulation of VLSI circuits and package interconnections. The emphasis is placed not only 

on efficiency, but also on accuracy and generality of the simulation algorithms. The AWE 

analysis, despite its success, fails to guarantee improved approximation when the order of 

the approximation is increased. These shortcomings are inherent to the moment-matching 

techniques that the current AWE-based simulators employ. The moment-generation process 

is very sensitive to numerical accuracy, and the resulting moment matrix, despite some re

medial techniques such as scaling and frequency shifting, is very ill-conditioned. Conse

quently, a very small error in moment value leads to a large error in pole-residue calcula

tion. This error is more probable when the order of approximation is increased. The fact 

that moments are generated by iterating the original system matrix results in the magnifica

tion of the dominant eigenvector component and the loss of information contained by the 

eigenvectors that correspond to the smaller eigenvalues. As the number of iterations is in

creased, the moment vectors become increasingly parallel to each other, forcing the ap

proximation to remain stagnant despite the increase in order.

Recently, iterative methods have become standard tools for solving large linear 

systems. Many iterative methods are based on Krylov-subspace methods. Krylov-subspace 

methods are particularly effective for partial eigensolutions, determining few eigenvalues 

and the corresponding eigenvectors of a matrix [67]-[68]. In [74]-[77], Krylov-subspace 

methods are used to construct a reduced-order state-space control by projecting the system 

onto expanding subspaces generated by the original matrix.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The Amoldi and Lanczos algorithms are two popular Krylov methods that are used 

for partial eigenvalue problems [78]-[81]. The use of these methods for model-order re

duction has manifold advantages. The Krylov-based methods avoid the magnification of a 

dominant eigenvector component that is inherent in the moment-matching method by using 

a set of vectors that describes the same vector space as the moment matrix, but is mutually 

orthogonal. This vector space allows the extraction of the desired number of poles to cap

ture the dominant features of the original input-to-output mapping. These methods, unlike 

the moment-matching method, provide a methodology to measure the error between the 

original model and the reduced-order model. The link between the Lanczos method and the 

moment-matching analysis has been studied in [14],[67]. Recent papers [13],[15] have 

applied the Lanczos method to AWE-like circuit simulations.

In this chapter, moment-matching and the Krylov-subspace methods are presented 

for the analysis of linear networks using modified nodal analysis formulation. The fre

quency-domain analysis is discussed in Section 3.2 as the motivation for the use of Pade 

synthesis. The moment-matching method and its implementation details are presented in 

Section 3.3. In Section 3.4, Krylov-subspace methods are introduced and Amoldi and 

Lanczos algorithms are applied for solving the partial eigenvalue, respectively. The mo

ment-matching and Krylov subspace-based methods are compared in Section 3.5. Finally, 

the conclusion is given in Section 3.6.

3.2 Frequency-Domain Analysis

The response of a linear circuit can be calculated efficiently in the frequency domain 

by using the transfer function of the circuit. The transfer function of a linear circuit is de

fined as the ratio of the output and input waveforms and is expressed as
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V (s )
H(s) = ± ^  (3.1)

V ^s)

where V Js)  and Viiui(s) are the Fourier transforms of the input and the output waveforms, 

respectively. For sufficiently small signals, a nonlinear network may be linearized in a 

small region around the operating point, and a transfer function can also be defined.

The transfer function of order [m,n] of a linear-lumped network can be written as a 

ratio of two polynomial functions of s or as a product of factors containing the poles and 

the zeros:

m m

H{s) = ^ - n----- : = K -& ----------  (3.2)

i + z v  n c ' - A >i=i <=i

where the ai 's and bt 's are real coefficients, the z, ’s are the zeros or the roots of the nu

merator polynomial, and the p t’s are the poles or the roots of the denominator polynomial.

A convenient expression for the circuit transfer function H (s) is in terms of its par

tial fraction expansion. For the case of n distinct poles, and m < n , the transfer function 

can be expressed as

H(s) = km+ ' £ - ! $ -  (3.3)
i? \S~  Pi

where k( is the residue that corresponds to the pole p{ of the circuit. Once we determine the 

circuit function H(s) and its poles, it is easy to calculate the time-domain response o f the 

function using Laplace transformation. Equation (3.3) is convenient for an inversion of the 

Laplace transform, and the time-domain impulse response is given in a closed form in 

terms of the poles and residues as

m  = kmS(t) + j r  kfi*'' (3.4)
r=i

Thus, the poles and zeros play a pivotal role in the analysis and understanding of a 

linear circuit. Unfortunately, the computation of the poles and zeros, even for a small
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circuit, is computationally complex [123]; therefore, the analysis of a network by extracting 

its poles is a formidable task and cannot be used for large circuits.

3.3 Moment-Matching Methods

Finding all of the poles of a large circuit is computationally inefficient, especially 

because some of the poles make an insignificant contribution to the circuit performance. 

Instead, we attempt to find an effective approximate transfer function by obtaining those 

few dominant poles that may adequately characterize the circuit behavior.

3.3.1 Moment calculation

The modified nodal admittance (MNA) [21] is one of the simplest, most general, 

and convenient methods of formulation for the analysis of circuits. The standard descrip

tion of a network using the MNA formulation can be written as

C 4 -  v(r) + Gv(r) + F(v(r)) = e(t) (3.5)
dt

where v(t) is a vector of nodal voltages appended by independent voltage source current, 

linear inductor current, nonlinear capacitor charge, and nonlinear inductor flux; F(v(t)) is a 

function describing the nonlinear elements in the network; e(t) is the independent source 

vector; and C and G are matrices describing the network.

For linear networks, the solution of (3.5) is given in the Laplace domain <V:

V(S) = m s ) r 'E ( s )  (3.6)

where Y(s)=(G+sC) is the transfer function. To approximate the solution of (3.6), V(s) 

can be expanded in a Maclaurin series as

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



V { S )  = ( [ r ']0 + 5[y -']I + s 2[ Y ~ %  + s 3[ Y - %  + - ) E ( j )  (3.7)

The coefficients of expansion in (3.7) are known as moments because they are re

lated to the moments of the impulse response as

00

n = 0

where

M .  =

~dnY(s)
dsn s=Q

n\
E{s) (3.8)

The derivative of Y '(s)  can be expressed in terms of Y using a recursive relation 

[12] given as

\dnY-'] n \ ^ rŶ
. dsn = - I

j= 0  <•=■ 1 & I i= 0 .  d s ° " r) s=Q

(3.9)

Using (3.8) and (3.9), the recursive equation for the calculation of the moments is

'd rY(s)'

Y0Mn = - X
dsr

M.
r=0

r-1 r!
(3.10)

with

Y0M0 = E

form:

The moment approach can also be viewed from the definition of the Laplace trans-

k = 0

The integral terms are identical to the moments in the probability density function, 

and they are given as

(-1)*Mk =
k\

\~tkv(t)dt
Jo

(3.11)
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The moments provide a measure of delay and rise times. For example, the Elmore 

delay for any system with a transfer function H(s) is the first moment that is [60]

= I dt = —H(0) (3.12)

This first moment of the impulse response is often a good, time-constant approxi

mation if a single pole dominates the low frequency behavior of a circuit. When there is 

more than one dominant pole, the higher order moments of h(t) are also important. The 

more moments that we calculate, the more we know about the behavior of the circuit 

around the expansion frequency point.

To generate higher approximations of order [l,q], the first l+q moments of each 

variable V are matched to a lower-order frequency domain function of the form

V(s) = km + ' f \ - ^ —  (3.13)

where the pt’s and k /s  are the complex approximating poles of the system and residues of 

each variable, respectively. It is equivalent to matching the time-domain moments to an ap

proximating function of the form

Kr) = U ( 0  + ^ , / ' '  (3.14)
/=i

For an impulse excitation e(t), Equations (3.13) and (3.14) become the transfer 

function H(s) and impulse response h(t) of the system, respectively. Note that as long as 

the circuit is asymptotically stable, h(t) is comprised of exponentials in time with negative 

real parts in the exponents, so the above defined moments exist for all values of q. If we 

can calculate these moment values efficiently, we may be able to better predict the low- 

frequency response behavior. The choices of I and q determine the accuracy of the ap

proximations, and often the choices l=q and l=q-l are used.

Therefore, the moment-generation process is a simple process by which the MNA 

matrix is expanded using the Taylor series, and the coefficients of expansion are obtained 

recursively using Equation (3.10).

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.3.2 Moment matching

Once we have obtained the moments efficiently by using the recursive relationship 

in (3.10), we can match the moments of the original system to those of a lower-order ap

proximate system.

The approximation of a transfer function of a system is obtained by matching the 

various Maclaurin series coefficients of the system function to a low-order rational ap

proximation. Matching the rational function to the Maclaurin series of Equation (3.8) as

an + a, s + a , s 2 + ... + a,s' , ,
—----- !-------^ ------------ —  = M0 + M .s  + + ... + M l+as q
i + V  + V  + - .  + V ’

(3.15) and cross-multiplying, we find

(a0 + axs + a2s 2 +... + =(A/0 + M xs + M 2s 2 + ... +

x  (l + bxs + b2s 2 + ... + bi/s vJ

Matching the coefficients of s°, s ' , ..., s1*1* yields to the following systems of

equations:

a0 = M0

ax = Mx + Mxbx

a2 = M-, + M,b, + Af0£,

at = M ,+ Mt_xbx H 1- M xbx_x + M0b, (3.16)

0 = H I- Aff-,+2^-1 + M l_q+lbl

® = M[+2 + MMbx H h +  ^l-q+2^l

= Mt+q + Ml+q-A + • • • + Ml+xbq_x + M {b,

The last set of q equations in (3.16) can be written in matrix form as
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' M , M/_?+| ~ w

M , ■ M , - , * b l m 1 + 2

M [+q-2 . M ,  _ A. 1fc*+
' 

■ 
sfi

(3.17)

Once the coefficients of the denominator polynomial are obtained from Equation

(3.17), the roots of the denominator polynomial are calculated from

bqP~q + V i  P 'q+[ + -  + bi P~2 + biP~' +1 = 0 (3.18)

Instead of obtaining the coefficients of the numerator polynomial directly, it is more 

convenient to generate the partial fraction expansions in terms of the q poles, roots of

(3.18). For I < q , the transfer function can be written as

(3.19)

The residues chi ’s in (3.19) are obtained by matching the moments in (3.15) using

the higher derivatives as

M. = i l
dsn

, v Kk„ + y  — —
;=i s - P i

(3.20a)
j=o

The residues are obtained from the solution of

' i  p?  • • • p,  ' ' K " " M o  '

0  p 7  • • • p ; : ,  p ; k\ M ,

. ■ =  - J

o  p 7  • • • p £  p7

J

_ o  Pr l • • • p ; .V  p7 ~ \

(3.20b)

The computational cost associated with solving Equations (3.16) and (3.20), which 

are Toeplitz and Vandermonde-like matrices, respectively, is negligible because for most 

practical cases, the matrix size is very small. In practice, we start from a one- or two-pole
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approximation depending on the size of the circuit and proceed to higher orders until the 

approximation is accurate enough for the purpose at hand. The above discussed procedure 

of obtaining the coefficients of the numerator and denominator polynomials or determining 

the residues and poles through partial expansion from the coefficients of a series is known 

as the Pade approximation [82]. A serious problem with the method is that it may yield un

stable poles.

3.3.3 Frequency shifting

One approach to avoiding instability is by using frequency shifting in the calculation 

of the moments. From Equation (3.20), we see that the higher-order moments are increas

ingly determined by the first pole or the first few poles. As a result, the higher-order poles 

do not contribute to the moments, and the higher-order moments do not add useful infor

mation to the model. This problem can be solved through real frequency shifting. By 

moving the jco axis to the right, we have reduced the ratio A' , / # .

The frequency shifting can also be achieved by adding proportional resistors in par

allel or in series to capacitance and inductances, respectively. Of course, approximate 

dominant poles that are obtained for the altered circuit must be shifted back to the right to 

obtain the actual poles.

3.3.4 Frequency scaling

A small deviation in the calculation of moments can cause a large deviation in the 

poles. Because the moments are computed with finite accuracy, the round-off error can 

spoil the Pade approximation and, consequently, the poles and the residues. When the ei

genvalues of r 1 are not close to unity, the powers of Y~l in Equation (3.6), and therefore
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the moment, change very rapidly. The large variation in moment values causes the moment 

matrix in Equation (3.17) to become ill-conditioned and near singular. This problem is eas

ily circumvented if we adopt a new frequency scale where the poles assume a more man

ageable range. If a normalization factor y = MQ/M { is used in (3.8), the expansion

Y(s) = M 0 + M ls + M zs z + M ,s 3 + ... + M t^ s l+q (3.21)

is obtained by replacing s with y  s, and y ' is absorbed in the scaled moments, Mr  

have similar magnitude. The scaling can also be achieved by scaling the capacitance and 

inductance. Once we obtain the normalized residues and poles, we need to scale the poles 

and residues back to retrieve the actual poles and residues. This method is found to be nec

essary in obtaining higher-order poles and residues.

3.3.5 Complexity

The computation of the power of Y '(s) to obtain the moments (9) may look to be 

more complicated than it actually is. In general, the Y matrix for a lumped, linear, time in

variant circuit can be reordered to improve the condition of the matrix.

In the special case, where the network contains lumped components only,

d rY
-TT = 0 ( r >  2) (3.22)
as

and can be reduced to

m i=0 ^ n = -
dY

(3.23)rt-1
.v=0* .

Therefore, once the Y matrix is L(/-decomposed, the major task in computing even 

higher moments is the repeated back substitutions of these /.(/-factors. For lumped ele

ments, we need only one LU  decomposition and l+q forward and back substitutions. The 

cost for polynomial factorization is less than that for moment calculation.
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The complexity of AWE increases linearly with the desired order of approximation, 

while the simulation time of the traditional method increases super-linearly with MNA ma

trix size.

3.3.6 Stability

Circuits composed of passive elements, positive-valued R, L, and C [83] are al

ways stable. The poles lie in the left half plane. Because v(t) is the response of h(t) to finite 

input, the integral of v(t) in Equation (3.11) exists, guaranteeing the stability of low-order 

approximations.

Experience, however, has shown that the Pade approximation yields bogus poles 

when higher orders of approximation are undertaken [7]-[9]. For passive circuits, without 

feedback and dependent sources, we can categorically reject all unstable poles.

There are instances, however, where the selected order of approximation cannot 

match the response waveform. When the response waveform is nonmonotonic and a first- 

order approximation is required, a single exponential function cannot match the waveform. 

If a network is strongly resistive, i.e., small resistors in parallel with L  and large resistors 

in series with L, then the circuit operates essentially as an RC  circuit with small inductance 

effects. Or, if the network has larger resistors across the capacitors and small resistors in 

series with capacitors, then the circuit behaves as an RL  circuit with small capacitance ef

fects. An even-order approximation may not match the waveform. Similarly, if a network 

is weakly resistive, it essentially behaves as an LC  network with complex conjugate pairs. 

Then, an odd-order approximation cannot produce the response waveform. As a result, 

AWE approximation may prove, in such cases, to have no solution or may generate a posi

tive approximating pole in an effort to match the waveform. These situations are easily
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remedied by moving to a higher order of approximation. Of course, the order of the ap

proximation need not be higher than the order of the network.

3.3.7 Advances in moment-matching techniques

As described in preceding sections, AWE is an efficient method to approximate the 

frequency-domain and time-domain responses of linear(ized) circuits. The method is found 

to be two to three orders of magnitude faster than the conventional circuit simulation meth

ods. This does not mean, however, that the method will always work. The Pade approxi

mation can generate unstable bogus poles. AWE cannot reliably be applied to analyze com

plex networks. It cannot model pure delay very well, even with higher-order approxima

tions. The use of complex exponentials to approximate pure delays in the transmission lines 

leads to spurious ringing.

Nevertheless, the results obtained from AWE are too good to abandon. Since the 

inception of AWE [6]-[8], different improvements have been suggested to make the method 

more flexible, more stable, and more accurate [9]-[ 12], [55]-[58].

Bracken, Raghavan, and Rohrer [56] and Lin and Kuh [57] extended the method 

for simulating distributed elements with long delays using the method of characteristics. 

The method overcomes the problem by factoring out pure delay, and applying moment- 

matching methods to approximate the remaining characteristic admittance and propagation 

function. In [56], a partitioning technique is used to incorporate nonlinearities into AWE. 

Tang andNakhla [10] generalized AWE for transient analysis of lossy, coupled transmis

sion lines network with nonlinear elements. The response of the linear subnetwork to arbi

trary piecewise linear signal is expressed in a recursive relation and is used in the reduced 

MNA matrix of the global network equation. Chiprout and Nakhla [11] introduced the 

complex frequency hopping technique (CFH) or multipoint Pade approximation to extract
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accurate dominant poles of a linear network within the frequency range of interest. This 

constrained search of system poles in the left half plane improves the methods’ capability to 

detect some of the high-frequency dominant poles that lie far from the expansion points. 

Recently, Sanaie and Nakhla [16], [58] introduced a method for incorporating subnetworks 

characterized by measurement data in AWE. In [20], a rational approximation technique is 

used to generate the moments from the measured data. However, the moments calculated 

by differentiating the approximating rational functions are order dependent and violate the 

definition of the Taylor series.

The addition of the above described techniques has converted AWE into a general 

purpose simulator that can be used frequency and time-domain analysis, sensitivity analy

sis, and symbolic analysis. These improvements, however, have been achieved at the cost 

of reducing the speed and increasing the complexity of AWE. Nonlinear elements are han

dled using partitioning and macromodeling that are implemented in the context of a tradi

tional simulation using implicit integration methods. The admittance macromodel is solved 

in time-marching fashion with the Newton-Raphson iteration to update coefficients. Pre

processing of subnetworks is also required before constructing the admittance macromodel. 

The CFH methods require the expansion of system functions at several points in search of 

good candidates for dominant poles. Although these additional operations increased the 

complexity of AWE, the method remains very efficient for analyzing electronic packages, 

performance-driven routing, and timing analysis of VLSI circuits.

Algorithm  3.1: Moment-matching method

I. Compute the moments:

~dnY(s)

s= 0

2. Compute the denominator polynomial coefficients, hts:
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' M, 'V ~ u M -
A/, . b2

- Af, _A. 1 $ 
. 

.
+ 1

3. Compute (poles) the roots o f the denominator polynomial, p t 's:

bqP~H + bq-\ P 'q+l +... + b2p~2 + biP~l + 1 = 0

4. Compute the residues:

"i p i1 • • • p;U p< '

ii

~ M0 -

0 P\2 ■ ■ ■ Pfx P,,2 *. M x

y

0 p?  . . . p -" V .

y

y

o P T '  .  . . p - - '_ _ K _ \1

5. Construct reduced-order model:

H i s )  = k m  + X  —L
.=1 J ~  Pi

3.4 Krylov Subspace-Based Methods

Methods based on Krylov projectors can be used to generate reduced-order models 

of large systems. The Krylov subspace methods are more stable than moment-matching 

methods because the solution of an ill-conditioned, moment matrix is not needed to calcu

late the dominant poles. Two variants of these methods, Amoldi and Lanczos processes,
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are discussed in this chapter. Both methods construct the reduced-order models in a com

putationally efficient manner by recursively operating on the original system. The methods 

are applied successfully for time and frequency-response approximations of large-lumped 

networks. The Amoldi and Lanczos methods compare favorably to the moment-matching 

technique in their numerical stability and accuracy. Illustrative examples are also given to 

study the methods' performance and accuracy.

3.4.1 Krylov subspace method

The numerical calculations of all eigenvalues of a matrix, even for a matrix of mod

erate size, are prohibitively expensive. The Krylov method allows us to estimate some or 

all of the eigenvalues of a matrix without solving a large eigenvalue problem. The method 

takes advantage of the sparsity of the matrix, which makes it particularly attractive for cir- 

cuit-simulation problems.

The Krylov subspace method simplifies the computation of the characteristic equa

tion of a matrix, Y, by transforming the equation

Y u - s  Via • • >’ln

p(s) = >21 2̂2 “ s •

Yn\ y«2 ym - s

=  0 (3.24)

to an equivalent equation

q(s) =

am

n
=  0 (3.25)

am - s  am - •  a 

The expansion of (3.25) in the power of s is accomplished with little effort by ex

panding the determinant in terms of minors of one row or one column [84],
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The coefficients, aijy in (3.25) are determined by the recurrent formulas

jij ~ y .« ,.
(*=2..... /I,* j - l .....n) (3.26)

i=l

For a nonsingular system, the polynomials p(s) and q(s) have identical roots. The 

polynomial q(s) differs from the desired characteristic polynomial p(s) by only a numeri

cal factor

q(s) = ap(s) (3.27)

The numerical factor for an initial vector = (1,0, ••• ,0)H is given by

a -

1 0

f l 12

a n - \ . \  a n - \ . 2

0

In
(3.28)

Equation (3.26) can be written as a matrix-vector product of the form

a,-= A , (i=l,2,... ,n) (3.29)

where A is the transpose of the given matrix , Y, obtained from the topology of the net

work and at = (an,ai2,...,ain)H is a column vector. Equation (3.28) can also be written as

a, = A ‘ a0, (i-l,2 ,... ,n) (3.30)

The sequence of vectors generated by the recurrent Equation (3.29) is called the

Krylov sequence. For a * 0 , the vectors a0,ax, . . .  ,ak_x form a basis of the Krylov sub

space generated by (3.29) and (3.30), i.e., the subspace of the form

Ki (A ,a0) = (a0 Aa0 A 2a0 ... Ak~'a0) = (a0 a, a2 ... at_,) (3.31)
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For the smallest integer k, where the matrix K ^ A ,^ )  is not full column rank, the 

vectors aQ,av . . .  ,ak are not linearly independent. Therefore, the vector ak can be written 

as a linear combination

at = cia t - . + -  + <V*o (3-32)

where the a 's  are determined by Equation (3.29) and c(’s are the coefficients of the charac

teristic polynomial. Thus the Krylov method makes it possible to determine the coefficients 

of the characteristic polynomial without solving an eigenvalue problem.

The particular Krylov subspace methods that we consider are the Anroldi and 

Lanczos methods. The Amoldi and Lanczos methods reduce a matrix into lower-order 

Hessenberg and tridiagonal matrices, respectively.

3.4.2 Arnoldi algorithm

The Amoldi algorithm is used to generate a reduced-order model of a large system. 

The method is based on the orthogonal projection of a system onto a subspace spanned by 

Kk(A,v0), where v0 is an initial vector. The Amoldi algorithm generates the Krylov se

quence of vectors v, using the Gram-Schmidt process. The vectors v,’s are mutually or

thonormal and have the property that

jpan{v0,vlt...,vt_,} = Kj(A,v0) = span{v0,Av0,...,Ai_lv0} ^  33)

The results of the Amoldi process are a reduced rxr upper Hessenberg matrix H  

and a set of N xr  Krylov vectors such that

AV  = VH
(3.34)

V V = /
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Given a starting nonzero vector v0, the procedure generates the orthonormal basis, 

V. The constructed orthogonal basis of the Krylov subspace generates a reduced Hessen- 

berg matrix Hk whose entries are obtained by

Then, the eigenvalues of Hk, can be used as approximations for the eigenvalues of 

A. If A is symmetric, then Ht is a tridiagonal matrix. In this case, the Amoldi method re

duces to the Lanczos method described in the next section. Furthermore, if A is symmetric, 

the reduced matrix Hk is built using only three-term recurrences.

The pseudo-code for the Amoldi algorithm is given in Algorithm 3.2.

A lgorithm  3.2: Arnoldi Algorithm

1) Choose v, with ||v,||, = 1 

For n=I,2,...,do:

2) For k = 1,2 compute

v, Av;, elsewhere
(3.35)

3) Set

n

4) Compute

5) I f  V u  = °. stoP-

Otherwise, set

The third step can be written in a matrix form as follows:
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where

has orthonormal columns, and

~K K.
hn\ ho 2 

Hn = 0 fh2

0

is an upper Hessenberg matrix o f fu ll rank n. Hn is obtained by removing the

last row o f  Hn.

3.4.3 Lanczos algorithm

The Lanczos method reduces an arbitrary large nonsymmetric matrix A to a tridi

agonal matrix Tk using two biorthogonal Krylov spaces whose columns are recursively 

filled using the matrix A and two initial vectors. Given two nonzero initial vectors, the gen

erated biorthogonal basis vectors

satisfy Wk Vk = I , and they are related to A-invariant and A H -invariant Krylov subspace,

Vt = (vo v, ... v , )  

Wt ={w0 w\ ... w4_,)

Kk , in that

span(Vk) = Kk(A,v0) = span(v0,Av0 A* ’v0)

span(Wk) = Kk(A H ,w0) = span(w0,A Hw0,...,(AH)k~'w0)

The V* and VV* are constructed based on three-term recurrences given as

(3.36)
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V n + l = A V n - < X n V n - P n V n - l  

' V l  = A H W „ - < X n W n - Y n ' V * - l

w TAv 8 8
where a n = —^ —- ,p „  = - r JL- T]n, a n d y„ = ——  p„ are the diagonal, upper, and lower

5 n ° n - \  n —!

off-diagonal elements of the reduced tridiagonal matrix T, respectively. The results, V, W , 

and T  matrices, satisfy

AV = W hT  

W HV = I

The best k xk  approximation to A that can be obtained using the information from

the two Krylov spaces is the matrix Tk. These two bases can be built only with three-term 

recurrences, thus requiring only inner-products and matrix-vector multiplication. The 

methods also take advantage of the sparsity of the A matrix to generate the reduced trian

gular matrix quite efficiently. If the rows of A have m nonzero entries, the matrix-vector 

product Av( uses only mn multiplications. The whole iteration step can take only mn+4n 

products.

Then, the eigenvalues of Tk can be used as approximations for the eigenvalues of A. 

The nonsymmetric Lanczos algorithm is given in Algorithm 3.3. Typically, the spectrum of 

Tn offers good approximations to some of the eigenvalues of A after relatively few itera

tions, i.e., for n « N . The reduced tridiagonal matrix Tn is obtained by removing the last 

row of f n.

A lgorithm  3.3: Lanczos Algorithm 

Lanczos(A, v ,, w, ,rj

1) For a given pair, v ,, vv, such that v ,, vv, ^  0 

Set v0 = w0 = 0, and <50 = 1.
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For n=l,2,...r, do:

2) Compute 8n = u'„wvn, i f  Sn =0 ,  stop,

.  wl ^ v  8 8 n
else compute a n = — -----, /3„ = — rjn, and y n = p n.

$n-\ o.rt-l

3) Compute

Vn+\ = A v „  - C C nVn -  P„ Vn_{

=  A h w h - C t nw n - Y nw n_x

4) Set p„Tl =IH|2,p n+I =||vv||2 ,

Vn+I = '
V ,  vv

  and wn+[ = -----
P/i+l 7?n+1

The coefficients ccn,/3n, and y jo rm  the reduced tridiagonal matrix

a, fi2 0 ... 0

7 2 oc2 . ... :
0   0

: . . . A

0 -  0 7» a„
. 0    0 Yn+x

T. =

3.4.4 Computing poles and residues

If the network consists of only linear elements, the Equation (3.5) can be written in 

Laplace domain as

(sC + G)V(s) = J(s) (3.37)

The frequency response of the network for the ith variable is

H(s) = e fsC  + G y 'j ( s )  (3.38)

where ei is a unit vector with a one on the ith position and zero elsewhere.
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The reduced transfer function of the system in (3.38) can be written in the form

(3.39)

where the pr's  and k-s  are the poles and residues of the reduced system, respectively. The 

Amoldi and Lanczos methods can generate the reduced-order transfer function equivalent to 

(3.38) by operating on the system matrix A and on the two initial vectors v0 and vi>0 that 

are obtained from the topology of the network given by

where et selects the output variable of interest.

Let the matrices Vr and Wr be the results of two separate Amoldi methods or one 

Lanczos method run with initial vectors. Both methods produce the Krylov bases, 

K(A,v0) and £(A,vv0), with approximately the same complexity. The Amoldi method, is 

in general, more reliable than the Lanczos method. Although there is no guarantee for the 

stability of the Amoldi-reduced matrix Hr and Lanczos-reduced matrix Tr, the Lanczos 

method is often used because of the existence of some techniques, such as restared Lanczos 

method to insure the stability of Lanczos-reduced model [124].

The eigen-decomposition of the reduced matrix Tr or H r is easily computed using 

one of the standard methods [64] to give

where A and Sr are the diagonal matrix and the eigenvector matrix, respectively. The poles 

are obtained from the eigenvalues as

A — -(G  + sqQ  *C, 

v 0 =  ( G  +  Sq) J ,

(3.40a)

(3.40b)

(3.40c)

(3.41)

(3.42)

and the residues are calculated from
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where 5; is the eigenvector belonging to A(. and £,=[1,0,... ,0 ]T.

Pade via Amoldi (PVA) and Pade via Lanczos (PVL) methods for calculating re

duced order model of linear lumped using Amoldi and Lanczos are given in Algorithms 3.4 

and 3.5, respectively.

Algorithm 3.4: Pade via Amoldi 

PVA(G, C, s0, r,i)

1) Define A = - ( G + J0 C)_l C, v0  = (G + sQ)"' J  , and et

2) Tr =Amoldi (A, r, v j

3) Compute an eigen-decomposition o f the reduced matrix Hr

H r = SrAS;'

4) Calculate the poles and the residues

Pi = K l 

_ « . - v 0 - (S je fi(S ; 'e x)

--------------- K

fc- = Z e l.v0 .(S /'£I)(5r,£I)
i=1 
A,=0

where 5, is the eigenvector belonging to A, and e,=[ 1,0, ... ,0]T.
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Algorithm 3.5: Pade via Lanczos 

PVL(G, C, Sq, r,i)

1) Define A = - (G  + ^ C ) -1 C, v0 = (G + sQ)"' J  , and vv0 = et

2) Tr =Lanczos (A, r, v0, \v0 J

3) Compute an eigen-decomposition o f the reduced matrix Tr

where 5, is the eigenvector belonging to A, and e,=[ 1,0 Of.

In the following section, moment-matching and Lanczos methods are applied in a 

Pade analysis to approximate the responses of linear circuits.

3.5 Applications

The Pade synthesis of linear networks using the moment-matching and Krylov- 

subspace methods are compared. For illustration purposes, the moment values before and 

after scaling are given. The poles and the residues of various orders of approximation are 

also tabulated. Response waveforms for various orders of approximations are given, and a 

comparison with traditional methods is also given.
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4) Calculate the poles and the residues

A,=0
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3.5.1 Example 3.1: RLC circuit

Consider the RLC circuit shown in Figure 3.1. A pulse waveform of 0.1 ns rise 

and fall times and 0.5 ns pulse duration, shown in Figure 3.2, is used as an input. Both the 

Lanczos and moment-matching methods are applied to extract the poles of the circuit. The 

approximation is done at s=0 in order to compare the results with published work [ 1 2 ].

The moments generated vary considerably in scale. The moment matrix formed 

using these values is ill-conditioned. To avoid this problem, moment scaling is applied. 

The actual and the scaled moments are shown in Table 3.1.

i n  io n  i o n  v,
H \A A r-n n n r M f—A A A r^ n n r—ir^ W V - 'T S T T ^ i ■ -Hi

1 nH 1 nH 1 nH

Vin J > ? > > 3 0  n
r  l pF 1 pF 1 pF

Figure 3.1: RLC circuit.

_  0.8 

f  0.6
5 0.4
o
*  0.2

0 0.5 2.51.51

time (ns)
Figure 3.2: Input waveform for RLC Example 3.1.
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The approximated poles converge to the actual poles of the network. Using the 

poles and residues, the time-domain response can be obtained by applying a recursive 

convolution that is discussed in Chapter 5.

Table 3.1: Expansion moments.

Order Actual moments Scaled moments
M0 0.2127827084259825 -1 .192217128472535X10'"
M, -1.192217128472535X 10" ' 1 -1.192217128472535X10-“
m 2 -1.478364899656193X 10^ 2.638533534523005X 1 0 “
m 3 3.111527518808308X 10'ji 9 .91141355227619X 10"12

m 4 -3.388034280475733X 10^ 1.926152738770375X 10' 12

m 5 -6.607005742449817X 10ij -6.703916347266424X 10 ' 2

m 6 2.28475495865197IX 10"6̂ -1.192217128472535X 10" ' 1

m 7 1.038643408885756X 10Jj 4.137561920769726X 1 0 ' 2

m 8 -7.692418404174678X 10 ' 1 -3.357007586637437X 10‘:
m 9 -7.119239194301306X 1093 -4.43741172989366X 10' 12

M,o 1.964689820995303X10'^ 7.329618812040346X 1 0 “
M„ -2.736497219579782X 10’lb 3.61012945086834IX 10 12

The reduced-order approximation of the RLC circuit via both the moment-matching 

and Lanczos methods gave correct and completely identical results. The various orders 

approximations of the poles and residues are given in Tables 3.2 and 3.3, respectively. 

Exceptionally good agreements, of more than eight-digit accuracy, are obtained for the 

poles and residues of this circuit. The first-order approximation shown in Figure 3.3 

exhibits an error that may be unacceptable for some delay applications. This approximation 

corresponds to the Elmore delay. Higher-order approximations are found at incremental 

cost to the first-order approximation. As shown in Figures 3.4 and 3.5, the approximations 

are approaching the exact solution as the order increases. As shown in Figure 3.4, the 

second-order approximation gives an acceptable solution. The higher-order, fourth, fifth,
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and sixth approximations are identical as shown in Figures 3.5 to the SPICE simulation 

results.

Table 3.2. Approximate poles for Example 3.1.

order poles xlO  ' ,0

Lanczos Moment matching
1 -1.784764732 -1.784764732

2 -0.6183868387 ± j 2.0091873 -0.6183868387 ±  j 2.0091873
3 -0.4687361814 ± j  2.002331794 

-25.78293771
-0.4687361816 ± j  2.002331794 
-25.78293771

4 -0.4718456316 ± j 2.005063915
-1.612961139
-43.33257593

-0.4718464207 ± j  2.005063523
-1.61296114
-43.33335495

5 -0.4780826222 ± j 2.008306882 
-0.4439703289 + j 4.880644709 
-0.6769398962

-0.4780841212 ±  j 2.008308277 
-0.4439702273 + j 4.880644925 
-0.6769413692

6 -0.4780053243 ± j 2.008347166 
-0.109034219 ± j  5.103524657 
-6.227593083 ± j  1.77018153

0.4780055759 ± j 2.00834756 
-0.109030158 ± j 5.103524513 
-6.227591408 ± j  1.770180524

Table 3.3. Approximate residues for Example 3.1.

order residues
Lanczos Moment matching

I -0.2127827084 -0.2127827084
2 -0.1063913542 ± i 0.09836983483 -0.1063913542 ±  i 0.09836983483
3 -0.0865486481 ± j 0.1040156707 

-0.03968541224
-0.0865486481 ± j  0.1040156707 
-0.0396854122 - i 7.452440653xl0,‘'

4 -0.08737105511 ± j  0.1045046772 
-0.0002349088457 - j 3.924641704xl0:n 
-0.0396854122-i 1.530094936x10-'*

-0.08737113831 ± j 0.104504651 
-0.0002349080725 - j 7.208607347xl0-‘s 
-0.03780552373 - i 1.530094936xl017

5 0.001689814954 ±  j 0.01290704296 
-0.09005050001 ±  j 0.105044178 
-0.03606133831 - i 8.537363593xl0 lv

0.001689840368 ± j  0.01290703191 
-0.09005049554 ± j 0.1050443185 
-0.03606139808 - j 8.303899626xl017

6 -0.09001543714 ±  j 0.1050821952 
0.0007452615687 ± j 0.01464729719 
-0.01712117864 ±  i 0.007333778404

-0.09001543843 ± j 0.1050822346 
0.0007452604444 ± j  0.0146473104 
-0.01712117623 ± j 0.00733375678
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Because reduced-order models will ultimately be used for nonlinear simulations, the 

final comparison between the full and reduced-order models is done in the time domain. 

Not surprisingly, the time responses of the output for the two methods are 

indistinguishable. Figure 3.5 is the output waveform for the sixth-order approximation, 

respectively. The sixth-order approximations of both methods are exactly identical to the 

SPICE result.

0.2

Lanczos and 
4 -moment matching0.1

0.05

0 0.5 1.51 2 2.5

Time (ns)

Figure 3.3: Transient response: First-order approximation.

0.25 
^  0-2 
-  0.15 
|  0.1 
|  0.05 

0
-0.05

0 0.5 1 1.5 2 2.5

Time (ns)

Figure 3.4: Output waveform: Second-order approximation.
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0.3

0.2
SPICE, Lanczos and 
. moment matching

2
I

0.1

- 0.1
0.5 I 1.5 

Time (ns)

2.5

Figure 3.5: Output waveform: Sixth-order approximation and SPICE.

3.5.2 Example 3.2: RLC interconnect network

Consider a large, interconnect tree network shown in Figure 3.6. The uniform 

interconnects are modeled with a lumped RLC model. A pulse waveform of 0.1 ns rise and 

fall times and 0.5 ns pulse is applied at the input. The transient response is obtained by 

applying Lanczos and moment-matching methods.

Single-point expansion, Lanczos and moment-matching methods are performed to 

extract the poles and residues. The moment-matching method can only extract stable poles 

up to the eighth order. An improved approximation using the moment-matching method 

requires a multipoint expansion. On the other hand, the Lanczos method is able to extract 

stable, higher-order approximations. The comparison of the moment-matching method and 

the Lanczos approximations for the responses V29 and V20 are shown in Figures 3.7 and 

3.8, respectively.
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1 . 5  5 1 . 5  5 20

29W-rW-'nn-T-vvv-'mv-i
100

Figure 3.6: Interconnect network of Example 3.2 (all units are in Q, nH, and pF).
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Figure 3.7: Response waveform at node 29.
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Figure 3.8: Response waveform at node 20.

3.5.3 Example 3.3: Coaxial cable with skin effect

A lossy coaxial line is simulated using moment-matching and the accuracy of the 

method is studied. A 100 m long coaxial cable, shown in Figure 3.9, has the following 

characteristic parameters of transmission line: L=476 nH/m, C=0.0476 nF/m, G=0, and

the resistance is characterized with a skin effect model described in [85] as

RCy) = A + fl(j)“

where R is the overall resistance in ohms per meter, A=0, B= 15.384, a=0.48288, and

s=j2rtf, w h ere /is  the frequency in GHz. The line is not terminated at the far end. A 3  V

pulse of 2 ns rise / fall and a duration of 58 ns is placed at the input.
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V  V rnear v far

1 0 0  m long coaxial lineV;in

Figure 3.9: Example 3.3, a coaxial line.

The exact, transient response waveforms are obtained using the Fourier transform 

of 8192 points. The AWE technique with the method of characteristic [56] is applied to 

approximate the response. A single-point, moment-matching method is used to extract ten 

poles. The solutions are compared to the exact solutions obtained using frequency-domain 

analysis and IFFT. As shown in Figures 3.10 and 3.11, the reduced-model solutions are 

indistinguishable from the exact solutions while the moment-matching method shows 

considerable error.

1.5

0.5

500 1000 1500 20000
Time (ns)

Figure 3.10: Example 3.3: Near-end voltage waveform, 
exact method (solid) and moment-matching (dashed).
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0.5

0 1500500 1000 2000 2500

Time (ns)

Figure 3.11: Example 3.3: Far-end voltage waveform, 
exact method (solid) and moment-matching (dashed).

3.5.4 Example 3.4: An example of RC-ladder network

Pade analysis is applied to analyze a simple stiff RC-ladder network shown in 

Figure 3.12. The moment-matching and the Lanczos methods are used to extract the 

eigenvalues of the system. A single-point expansion is used around the origin. As shown 

in Table 3.4, the moment-matching method is able to estimate only the two eigenvalues of 

the circuit. On the other hand, the Lanczos method gives all eigenvalues accurately. The 

comparison of the percentage errors for the moment-matching and Lanczos are given in 

Table 3.5.
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+  1 PF

Figure 3.12: Eample 3.4: An example of RC-ladder network

Table 3.4: Approximate poles for Example 3.4.

order Poles
Lanczos Moment matching

1 -9.89011x10 6 -9.89011x10 s
2 -9.9899x10 s 

-9.99901x10*
-9.9899x10 s 

-9.99901x10*
3 -9.989899102x10 s 

-1.000001019x109 
-1.001010143x10 11

-9.989899102x10 s 
-1.000001008x109 
-1.013426214x10"

Table 3.5: Absolute errors of approximate poles for Example 3.4.

Exact % error
poles Lanczos Moment matching

-9.989899102x10 s 3.5215x10 -9 3.617x10 -9

-1.000001023x109 3.525x10-7 1.45307x10 -6

-1.001010091x10 11 5.25066x10's 1.24036
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3.6 Conclusions

Direct simulation methods are far too slow to consider the simulation of the entire 

chip with the electronic package that is needed for adequate circuit performance verification. 

As a result, many specialized methods that are based model-order reduction methodologies 

are applied to circuit simulations to tackle these problems. Methods based on Pade 

synthesis, such as AWE, CFH, PVL and PVA techniques are by far the most efficient 

analysis methods for systems with a large number of passive elements.

Pade approximation can also be efficiently applied to the analysis of transmission 

lines. The accuracy of the estimation is improved by merely increasing the order of 

approximation. Methods, such as AWE, CFH, PVL and PVA techniques give a two- to 

three-order magnitude savings in simulation time over the traditional methods when applied 

to a large system.

Both moment-matching and Krylov-subspace methods have shown to be 

computationally efficient. The Krylov subspace-based methods, and Amoldi and Lanczos 

algorithms compare favorably to the moment-matching methods when analyzing linear 

lumped networks. For low-order systems, the moment-matching method and the Lanczos 

algorithm have identical accuracy. However, for stiff systems and large networks where 

high-order approximations are sought, the Krylov-subspace method is found to be 

superior.

The moment-matching, however, is direct and more efficient than the Krylov 

subspace-based method when analyzing distributed systems. The moments of a 

transmission line system can be calculated analytically and matched to obtain partial Pade 

approximation. However, for Krylov subspace-based methods, such as PVA and PVL, the 

transmission line system has to be approximated by a fmite-order system. In [59], [8 6 ], 

and [87], the spatial variation of the transmission system is approximated by cosine and 

Chebyshev functions. The Amoldi or Lanczos methods can be applied to the approximated
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finite system to find a reduced model. The intermediate spatial approximation can introduce 

error.

Although the methods based on Pade approximations, such as AWE, CFH, PVA, 

and PVL reduce the simulation time for interconnect networks, the stability of the reduced 

model still remains an issue of concern. In Chapter 5, a guaranteed stable reduce-order 

modeling technique is described.
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CHAPTER 4

ACCURATE ANALYSIS OF DIODE- 
SWITCHING CHARACTERISTICS USING 

ASYMPTOTIC WAVEFORM EVALUATION

4.1 Introduction

In this chapter, an accurate diode model that represents the transient behavior and 

high-frequency characteristics of a semiconductor diode is derived using the asymptotic 

waveform evaluation technique. The AWE technique is directly applied to the diffusion 

equation to construct a reduced pole-residue model that describes the dynamic process 

occurring in a p-n junction. The model is derived by directly solving the carrier continuity 

equations in an analogous manner to that of the AWE solution to transmission line 

equations. The method efficiently calculates the poles and the residues of the diode model 

efficiently accurately by recursively generating the moments of the carrier concentration. 

The method simulates the excess carrier redistribution phenomenon in a diode junction 

using a reduced-order model. It simulates accurately the diode forward and reverse 

recovery phenomena in high-speed and power electronics. The model is capable of 

providing an increasingly accurate approximation to the characteristics of the device under 

all operating conditions.
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The method reduces the computational cost by an order of magnitude over that for 

Linvill’s multisection model [8 8 ] of ladder or lattice networks [89], [90] of many lumped 

elements used to model carrier diffusion and the recombination process. The diode 

recovery phenomenon is simulated for illustration, and the improved accuracy is verified by 

comparisons with results from conventional methods and published works.

For most applications, the transient simulation of integrated, diode-switching 

circuits can be carried out using conventional circuit simulators such as SPICE and 

ASTAP. However, under high-frequency operations, the compact analytical device models 

used in the traditional simulators cannot predict the true behavior of terminal currents and 

charges caused by the dynamic process of carrier diffusion and recombination in the 

diodes. The conventional charge-control model [91] that is derived with a quasi-static 

approximation produces unsatisfactory results when used for the transient analysis of 

switching circuits. For example, the diode reverse-recovery phenomenon and, 

consequently, the power dissipation during the diode turn-off process are often 

miscalculated.

More powerful and accurate models for diodes have been the topic of active 

research for many years [8 8 ], [89], [92]-[94]. In particular, the reverse-recovery 

phenomenon has been discussed in a number of recent papers [4], [90], [95]-[98]. Linvill 

in [8 8 ] showed that the diffusion process in junction transistors can be modeled by a ladder 

network consisting of many lumped elements. The physical model was modified by Wang 

and Branin [89] for simulating the diode recovery phenomenon in a circuit analysis 

environment. Although the incorporation of such elaborate models into a conventional 

circuit simulation program such as SPICE improves the accuracy of the analysis, the size of 

the problems increases several fold due to the introduction of many nodes to interconnect 

the lumped elements. A large number of circuit elements are necessary to account for the 

distributed nature of the carrier diffusion process in order to accurately predict the dynamic
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behavior of a p-n junction diode. Consequently, the method did not gain attention as an 

accurate modeling technique.

In [4], Chua and Chang proposed a diode model using higher-order dynamic 

elements. The method accurately represents the diode; however, the potential of the model 

has not been exploited fully because dynamic elements cannot easily be implemented in 

SPICE-Iike simulators. As a result, recent research efforts have been focused on improving 

the conventional model using additional circuit elements and macro-model circuits [9 5 ]- 

[97]. Most recently, Chang [90] has used a time-varying diode characteristic model for 

accurate analysis of diode-switching behavior.

In Chapter 3, Asymptotic waveform evaluation, and its derivatives, which are 

based on asymptotic waveform evaluation and other moment-matching techniques, have 

shown to be useful in the analysis of large, linear distributed systems described by partial 

differential equations. The AWE has been shown to be an efficient method to analyze large 

distributed networks with a gain of three orders of magnitude speed over that for traditional 

simulators. It provided a suitable platform for efficiently handling large RLC networks and 

distributed systems. The multisection, physical diode model [8 8 ], [89] can be efficiently 

implemented using AWE. The carrier-continuity equations describing the dynamic process 

in the diode junction can also be solved in a similar manner as for the AWE solution of the 

transmission line equations. First, the moments of the solutions of the continuity equations 

are computed recursively. The Pade approximation is applied to obtain a reduced-order 

model. Then, the resulting transfer parameters are expressed as a pole-residue model that 

can be used for time-domain simulations. Recursive convolution is used to obtain the 

transient response of diode-switching circuits.

In Section 4.2, we briefly outline the physical principles and the basic equations 

that govern the behavior of charge carriers in the presence of time-varying fields. Then the 

AWE technique for solving such a system of equations is discussed, and recursive 

relationships to generate moments of the solution of continuity equations are discussed. In
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Section 4.3, simulation results and implementation issues are discussed via an example of 

diode-recovery analysis. The accuracy of the method is verified using conventional 

methods and published results of the exact numerical simulation using mixed-level circuit 

simulation [90]. Finally, a conclusion is given in Section 4.4.

4.2 AWE Diode Modeling

Consider a one-dimensional p-n  diode shown in Figure 4.1 with {Dn,Dp} and { t„, 

t }, the electron and hole diffusion constants and life times, respectively. Under a quasi

neutral assumption, the dynamic behavior of excess minority-carrier concentrations n(x,t) 

and p(x,t) in the n-region and p-region, respectively, are governed by the continuity 

equation [98]

A (y ) S M . ! . Q _ n ( i O  (0 < t < W )
«v n '  '  p 'dt dx - T„

=  (o s ^ s h o  <41>

where {W , Wn } are the junction widths of the n-region and p-region, respectively. The 

total current, under the quasi-neutral approximation, can be approximated by the diffusion 

current at the junction interface x=0, i.e.,

dn(.x, t)
t„(r) = -A qD n 

L it)  = -A qD

dx 

dp{x, t)
1 = 0  (4.2)

x = 0" ’ p dx

where q is the charge and A is the junction area. To obtain the solutions of the partial 

differential Equation (4.1), we define the corresponding boundary conditions for excess 

carrier distributions
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V ( t ) /

n(0,t) = npo(e A r - 1)
voyr (4.3)

PiO*t) = P„(e A r -1 )

where {n ^  , p n0},v(t), and VT are the equilibrium carrier concentrations, the diode junction 

voltage, and the thermal voltage, respectively.

p-type j n-type
i(t)

Wr
X X

+ v(t)
Figure 4.1: p-n Junction diode.

Identifying the continuity Equation (4.1) as an analogous to the transmission-line 

equation, the excess minority-carrier concentrations can be considered as the voltages and 

currents, with the diffusion constants, electron and hole life times, and width of the base 

acting as the transmission line parameters [8 8 ], [90]. The solution of (4.1) can be 

implemented very efficiently using the AWE technique without any synthesis and explicitly 

calculating any circuit element for a ladder or lattice network.

We start the solution process1 by taking the Laplace transform of (4.1) that yields

d 2P(x,s) P(x,s)sP(x,s) = D
dx1

(4.4)

Now let P(x,s) be expanded in a power series as

P(x,s) = P0(x,s) + j/](.r,^) + j :P2 (x ,j) + 5 3P1 (x,5 )+  ... 

Inserting (4.5) into (4.4) yields

(4.5)

1 The solution for electron concentration, n(x,t), can be obtained in a similar manner.
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5 P0 (X,5 ) + r P ,U , 5 ) + 5 3P1 (.r,5 ) +  ... = Dp[ - ^ S) + s — ^ 5-} + + ...]
ax' dx' dx'

[P0 (.r,j) + ̂ p(x,j) + 5 2 P,(.r,5 )+  ...] , ,  ^------------------------------- --------------- (4.6)
r n

Matching the corresponding powers of s, the following set of equations is obtained. 

The zeroth-order equation is

0 =  0  ■<•!■?> (4.7)
p dx'

The first-order diffusion equation is

P0(x,s) = D ? - ' (4 .8)

'  &  %

d '- P ^ s )  Pj(x,s) 
P dx2 T

p

and, in general, the nth -order diffusion equation is

dx- rp

For convenience in exposition, a long base (VF,, —> oo) is considered first. The 

initial and boundary conditions are

PQ̂ 0 )  = PnoV ( s ) e '^

P0 ((U ) = PnoV{s)

Pn(x, 0) = 0 
P„(0,*) = 0

,=o (4.10.a)

(4.10.b)

H r ) /
where n = 1,2,3,... and F(.y) is the Laplace transform of v(r) = e Ar - 1 .

To generate the moments of P(x,s), the same system of differential equations must 

be solved repeatedly; the forcing functions on the right-hand side are the only changing 

parameters. First, P0(x,s) is determined from (4.7). Then, (4.8) is used to find Px(x ,s), 

and so forth, until 2q moments have been found. All terms in moments, therefore, can be 

evaluated in succession by solving only the simpler differential equations. In [4], Chua and
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Chang used quasi-static expansion to transform the partial differential Equations (4 .1 ) into 

differential equations and to obtain a series of solutions in the time domain.

The zeroth-order solution for a long-base diode is given as

P0 (x , s) = PMV{s)e (4.11)

The higher-order solutions of Pn(x,s), n=l,2,3,... are found to be

~Lp

P, (x ,s) = ^ s 2[VO) -  ^ ] ( x  + £-)e~?L' (4 .1 2 )
°L n s Ln

P P

O  ,  ,  ^ p P n o  3 r \ l r  x ^ ( 0 ) v  , * 2 , x " APi (x,s) = — f —  s [V O )------- ](x + —  + — T)e x '
16Lp 5 Lp 3 L'p

P4(x,s) = - - ^ 0 3[ VO) -  —  ](—  + —  + ^ r  + - ^ T )e~^Lf 
64 Lp i  2 2Lp L\ 6L3/

The higher-order solutions are summarized in a matrix form as 

~ P n o T p

2 L P
2

P n o *  p  

8 L n

2
Pno^p

58 LTn

lVis ) - ^ ) e 7 Lp (4.13)

P{ (x. j)

P2 ( X . S )

P ^ x . s )

P4 ( X . S )

P5 ( x , s )

Pn i x . s )

Here, v(r) is assumed to reach a steady-state value for t<  0 . The general 

expression for the mth-order carrier distribution can be derived by induction as

61

3
P n o T p  

l 6 L p

3
P n o T p

i s  4

P n o r p  

4 8 1?p
0 0

c  4  
5 P n o z p

c  4  
5 P n o * p

4
P n o T p

4
P n o z p

128 L p m i } p 6 4 1?p 3 8 4 L *

7 P  n o T p
r  5
'  P  n o 1 p

,  5 
* P n o z p P r .o x p

5
P n o z p

2 5 6  L r 2 5 6 L 2 2 5 6  4 3 8 4 4 2S4Q LSp

o o

0 0 0
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Pm(x,s) = (C ,V  + Q V ' " 1 + ... + C fx  + C”) ( V ( s ) - ^ - ) e ' ^
s (4.14)

where C* is the entry in the mth row and nth column of the triangular matrix in (4.13),

henceforth referred to as matrix C.

Efficient recursive relationships to generate the higher-order moments are thus 

obtained from the entries of the matrix C  of (4.13) as

^  r c ; +1(n +  i) rpc:_-' rr t>
Cn = L ------------------- 1-------------  fo r  m > n # l f

p 2 2 Lpn

C = " 7 ^ -  {for m = n j  (4.15)
2 Lpn

C” = 0 {for n > m }

starting from

Therefore, the higher-order solution of (1) for a finite-width base diode can be 

written in the form of

P(x,s) = (Ae + B e ^ ) ( V ( s ) - — ) (4.16)
s

where P(x,s) is a column vector of higher-order solution PJx.s), n=l,2,3... , and A and B 

are triangular matrices similar to matrix C of (4.13). The general expression for the mth- 

order carrier distribution can be similarly derived by induction from the entries of matrices 

A and B:

P M ,s )  = « V  + O ' - 1 + ... + a”x  +  O  +(bn*n + + -  + K x  + O e

x ( V ( s ) - ^ )  (4.17)
s

where a" and b are the entries in the mth row and nth column of the matrices A and B,ti ft

respectively.
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The efficient, recursive relationship to generate the higher-order moments is 

similarly derived:

Therefore,

where

L „ m —I

u — P 1
2 Dpn

2 Dpn

{for rn=n }

- L  
2DPn 

- L

a .  =

b: =

K  = —  [ - D r n ( n  -  !)*;„ + iC,' ]2 Dpn L J

{ fo r m > n * l)  (4.18)

mv
l — e

2l ,
. f = i

K
m

Y
. - / X

2l ,
j =1

'- '+ e  /L% b ”'Wn'- 1 
;=>

y=i

(for n = l}

b n =  ~ a n (for n = l}

and a” = b” = 0  (for m<n}

P, 0  ________/7 = —-u0 :»«/
e ^  -1

pbo -----
(4.19)

Next, the rth -order excess hole density, the solution to (4.1), is given by the power

series

P(.t,s) = 5 y /> ( .t ,5 )
4=0

r

N(x,s) = ^ s kNt (x,s)
(4.20)

t=o
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The diode current can be found in (4.2)

70 (5 ) +  5 /, (s) + s 2 I 2 ( s )  + ... = -A qD dP(x,s)
(4.21)

r=0p ax

By substituting (4.20) into (4.21), the current for a long-base diode (VVn -»  °o) can 

be expressed as [4]

3 3 4 4t ps r-s  | r 3ps} xps
9

+  •
7 05 5

8 16 128 256
f -  v ( 0 )

\  s
(4.22)

The above series also converges at the rate r  = I O'7.O  p

Its)
If we define a virtual admittance as K(s) = ——  and assume that v(0) = 0 without

V{s)

any loss of generality, then

m  = is
?nSl + -s ------p—
2 8

+
I r is5 _s

16 128 256
(4.23)

Thus, the procedure above allows one to compute the moments of the virtual 

admittance Y(s) for a p-n diode:

V(s) = Y0(s) + sY.(s) + s2f,(s) + s3Y3(s)+  ... (4.24)

Once the moments are found, the Pade approximation is carried out to convert the 

2q low-order moments into a q pole-residue rational function. The virtual admittance can be 

written in the form

< i , + y r^ - = ? 0(i) + i i ; W + i !K(i) + J>?J(j )+  ... (4.25)

where the p, ’s are the poles of the approximation, and the a2 s are the products of the 

corresponding residues and poles.

Recursive convolution is used to construct a macromodel that can be implemented 

as a conductance and a time-dependent current source. Recursive convolution is discussed
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in Chapter 5. The current and voltage relationship for piecewise constant excitation is given 

as

<7
i[nAT] = a0v[nAT]+ £  U n M ] (4.26)

<t =  l

where ik [ / ja i ]  =  a(.( 1 - e~nAT)v[{n -  D M ] + e ' pATit [(n -  dap]

Equation (4.26) can be incorporated in the MNA matrix [21] to be analyzed with 

other nonlinear network using conventional Newton-Raphson and numerical integration 

routines. This equation provides the capability for integrating the diode reduced-order 

model into SPICE-type simulators.

Thus, AWE provides an efficient means representing a diode with the pole-residue 

model either in the time or frequency domain. An important advantage of this type of model 

is that it is easy to implement and is very fast to evaluate. The poles and the residues need 

to be calculated from device parameters only once and will be used during simulation when 

needed. The model is restricted not only to predicting terminal characteristics, but also to 

providing additional information on the transport phenomena that is valid under all 

operating conditions.

4.3 Numerical Results

In this section, we will show that the diode model derived in the preceding section 

can be used to model the actual diode switching behavior. The simulation results and 

comparisons are given.

Consider a one-dimensional, long p + -  n diode with a p-type region much more 

heavily doped than the n-region. The diode parameters are xp = 100 ns, 

Dp =0.001 m2/s ,  pno = l x \ 0 w atom / m \  A = l x l 0~ 9m2, and VT = 0.026 V. A
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voltage source, a resistance R= 50ft, and a diode are connected in series as shown in

Figure 4.2.

v(t)
+

VD

Figure 4.2: A biasing diode circuit.

Using Equation (4.18), the moments of hole concentration are calculated. The first 

eight actual moments along the scaled moments are given in Table 4.1. The moment values 

change very rapidly at a rate of = 1CT7. The actual computation of the coefficients of the 

polynomials in the Pade rational function using these moments is a classically ill- 

conditioned problem. Higher-order approximations cannot be obtained because of the large 

change in moment values which makes the corresponding coefficient matrix algorithmically 

singular. This problem is easily circumvented by using the ratio of the first two moments as 

the normalization factor. The scaled moments are of the same magnitude as shown in 

Table 4.1.

Once we obtain the normalized residues and poles, we have to scale them back to 

extract the actual residues and poles. The approximate residues and poles of the first, four- 

order approximations are given in Tables 4.2 and 4.3, respectively. A square waveform 

input is applied to forward bias the diode into the conducting state at r=2 and then a 

reverse bias at i - l l  ns, to instantaneously put the diode into reverse mode.
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Table 4.1: Actual and scaled expansion moments.

Order Actual moments Scaled moments

m0 1.60200 x lO '16 1.60200 xlO "16

m\ 8.01000 x l  O'24 1.60200 xlO "16

ntj -2.00250 xlO"31 -8.01000 x lO -17

"h 1.00125 xlO"38 8.01000 xlO "17

m4 -6.25781 x 10"46 -1.00125 xlO"16

m5 4.38047 x 10"53 1.40175 xlO "16

-3.28535 xlO"60 -2.10262 xlO"16

m7 2.58135x1 O'67 3.30412 xlO "15

ms -2.09734 x 10~74 -5.36920 xlO "16

Table 4.2: Approximate residues.

Order First order Second order Third order Fourth order

ko 4.806 x lO '16 8.010 xlO"16 1.121 xlO"15 1.442 xlO"15

k\ -1.282 XlO"8 -5.168 xlO"10 -1.308 xlO"10 -5.341 x lO '11

-6.356 xlO"8 -1.851 xlO"9 -4.272 xlO"10

-1.774 XlO"7 -4.272 XlO"9

K -3.793 xlO"7
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Table 4.3: Approximate poles.

Order First order Second order Third order Forth order

Pi -4.000 xlO7 -1.528 xlO7 -1.308X107 -1.132X107

P i -1.047 x10s -2.572 xlO7 -1.704 x lO 7

P i -2.020 x10s -4.000 x lO 7

P a -3.316 x10s

During the first phase when the diode is in the forward conducting state, the hole- 

charge buildup due to the forward current, as time progresses, is shown in Figure 4.3. 

The vertical axis is the hole concentration in a logarithmic scale and the horizontal axis is 

the distance in microns from the p*-n junction. Each curve is a snapshot of the minority 

carrier concentration. When the input voltage waveform is suddenly switched to a reverse 

bias, the charge concentration at x  = 0 must drop to zero. Figure 4.4 illustrates the time 

progression of the excess charge removal.

The diode voltage and current waveforms are shown for a different order of 

approximations in Figures 4.5 and 4.6, respectively. The fourth-order approximation has 

only improved the third-order current waveform estimate by small details indicating 

convergence. The fourth-order approximation gives a more realistic prediction of the 

diode’s storage time and reverse recovery times, similar to those for the exact numerical 

solutions in [90].

The conventional diode model [91] is not capable of accurately predicting the diode 

recovery effect because it cannot account for the finite time required for the stored charges 

to be removed from the junction region when the diode is suddenly reverse-biased after a 

steady forward bias. The charge-controlled capacitance element of the conventional model

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



cannot simulate this delay accurately. Distributed networks are needed to model the delay 

effect in the diffusion process. Figures 4.7 and 4.8 show the diode voltage and current 

responses using the conventional method and AWE technique, respectively. The 

conventional model underestimates the recovery time, while the AWE gives a more accurate 

solution for the storage and recovery times. The conventional simulation instantaneously 

switches to a steady-state value that predicts an unrealistic abrupt discharge of the residual 

stored charge.

The diode voltage and current predicted by the conventional model snaps to the 

nonconducting states are shown in Figures 4.7 and 4.8, respectively. The AWE model, 

on the other hand, predicts the smooth decay of the reverse-diode current observed in the 

diode recovery phenomenon. The conventional model predicts the reverse-recovery time, 

several orders of magnitude smaller than the actual. Thus, the conventional diode model is 

unsatisfactory for analyzing high-performance, high-power circuits.

It has been verified in [90] that 100 T-network sections are required for the ladder- 

network simulation of the diode recovery process with the same accuracy as that obtained 

using a ten-section lattice network. The results from the AWE analysis give a similar 

recovery time obtained with the mixed level simulation as reported in [90], The AWE 

method also reduces the computer simulation time by a factor of more than two when 

compared to the simulation using SPICE-type analysis.
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Figure 4.5: The diode voltage waveforms, one to four orders of approximations.
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Figure 4.6: The diode current waveforms, one to four orders of approximations.
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Figure 4.7: Input waveform and diode voltage response.
AWE method (—) versus conventional quasi-static model (—).
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Figure 4.8: Diode current response.
AWE method (—) versus conventional quasi-static model (—).
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4.4 Conclusion

Using asymptotic waveform evaluation, a reduced-order diode model has been 

derived for the efficient transient analysis of integrated, diode-switching circuits. Because 

the model is derived directly from the device physical operating principles, the method 

accurately represents the dynamics of the carrier redistribution process in the diode junction 

with the accuracy only achievable by device simulators. The model also avoids complex 

and time-consuming network synthesis and macro-modeling. Efficient recursive 

relationships are derived to generate the diode excess carrier-concentration moments 

rendering the computational cost associated with model constructions as negligible. Higher- 

order solutions are obtained with incremental costs by merely increasing the order of the 

approximation. Using a low-order model, the method accurately simulates the diode- 

switching behaviors; a more realistic time delay, storage, accurate recovery times of 

terminal currents and voltages, including time-varying charge distribution in the junction, 

have been calculated. The full potential and the correctness of the method have been 

verified using conventional methods and published results of the transient analysis of the 

diode-switching characteristics.
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CHAPTER 5

FREQUENCY-DOMAIN MODELING AND 
SIMULATION TECHNIQUES

5.1 Introduction

As wiring density in high-performance packaging increases, the interconnect 

geometry becomes nonuniform and the cross-sectional dimensions become smaller. 

Consequently, the interconnect and dielectric losses, dispersions, and discontinuities have 

to be considered in the analysis of an electronic package. These frequency-dependent 

phenomena of an interconnect are most accurately characterized by measured or simulated 

data than by closed-form functionals [99]. For example, the skin effect of an interconnect is 

best characterized by frequency-domain measurements or full-wave electromagnetic 

simulation. The transient analysis of systems described in tabular forms cannot directly be 

performed using conventional simulators such as SPICE and ASTAP, or using methods 

based on order-reduction techniques, such as AWE, CFH, and PVL.

The incorporation of interconnects characterized by frequency-domain data obtained 

from measurements or full-wave electromagnetic solvers into circuit simulators is complex 

and computationally intensive. Because nearly all interconnects are driven or terminated 

by nonlinear devices, the method must combine the time-domain and frequency-domain 

descriptions [45], [100], [101]. The most straightforward approaches are to calculate the
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impulse response of the measured network using the inverse Fourier transform (IFFT), and 

to apply the discrete time solution to solve the entire system for a given input waveform. 

Such an approach requires that at every simulation time step, the impulse response be 

convoluted with the entire computed input waveform. The IFFT used to transform 

frequency-domain data into time-domain data requires special attention to avoid aliasing. 

Extrapolation and low-pass filtering of the frequency-domain data are required to reduce 

the time-domain ripple associated with taking the IFFT. A very large number of samples is 

required for an adequate representation of the impulse functions, which increases the 

convolution computation time of the transient response. Although this method gives a 

reliable solution, it is not fast enough to provide results in an acceptable time interval.

Although order-reduction techniques, such as AWE, CFH and PVL are efficient 

methods to analyze linear systems, they are not quite suitable to handie networks 

characterized by tabular data, as the derivatives at selected expansions cannot accurately be 

calculated to find the moments. In [20], a hybrid technique is used by first approximating 

the function by calculating rational functions over partitioned frequency ranges, and then 

using the derivative of the rational functions to obtain the moments. However, the moments 

obtained using this method are order-dependent, violating the definition of the Taylor 

series. Several methods have been suggested to increase the versatility of AWE and CFH 

methods. In [16], [58], a methodology for incorporating subnetworks characterized by 

measured data is presented. The lumped-model-based subnetwork is reduced and the 

measured subnetworks are incorporated as submatrices in the MNA matrix, the formulation 

employed by conventional simulators of the global circuit to be solved at a set of frequency 

points. Then, IFFT is performed on the data points to obtain the response in the time 

domain.

In this chapter, we present an algorithm for accurate synthesis and efficient 

simulation of arbitrary networks. The method is based on network partitioning, robust 

rational interpolation and recursive convolution to generate macromodels that can be used
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for time- and frequency-domain simulations. First, the network is partitioned into 

subnetworks. Then, if the pole-residue representation of each lumped-model subnetwork is 

found using a specific model-order reduction technique, a more accurate rational 

interpolation method can be applied for complex systems. Then, the pole-residue level 

representations of lumped-model-based and measured subnetworks are combined to form 

the global network. The pole-residue models are incorporated as submatrices into the 

system matrix of the global network using a recursive convolution formula, and then the 

entire system including the nonlinear devices is solved in the time domain. Thus, the size of 

the overall circuit to be simulated is reduced. The method does not require a numerical 

transform treatment or the smoothing and band-limiting filtering of a large number of 

points, which are often required in conventional methods.

In order to obtain an accurate rational approximation over a wide frequency range, 

frequency normalization and shift are used to optimally condition the Vandermonde-like 

approximation matrices and the Householder orthogonal triangularization to solve them. By 

utilizing the analytic properties of the network functions, the approximation algorithm 

efficiently generates stable, rational functions for high-order systems. The method can be 

integrated with reduced-order modeling techniques such as AWE, CFH and PVL, or 

conventional simulators such as SPICE and ASTAP for transient simulation of high-speed 

interconnect networks. Examples of linear and nonlinear networks are given to demonstrate 

the validity and accuracy of the method.

In Section 5.2, the formulation of a multiport network is presented. In Section 5.3, 

the rational approximation is discussed and the numerical properties of the approximation 

method are given. The modified, balanced transformation is used to reduce the 

approximating function in Section 5.4. In Section 5.5, the time-domain macromodels are 

generated from pole-residue representations using recursive convolution. Numerical results 

are shown in Section 5.6. Finally, the conclusion is given in Section 5.7.
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5.2 Multiport Network

A general network can be partitioned into a number of subnetworks, N t, N , ........

N n as shown in Figure 5.1. Each subnetwork can be represented as a multiport network 

that can be characterized in terms of one of the following parameters: admittance, 

impedance, hybrid, transmission, or scattering parameters. The analysis of the global 

network, N , can be carried out by generating a pole-residue model for each subnetwork. 

The Pade synthesis can be used to efficiently compute the low-order approximation of the 

admittance matrix for the subnetworks characterized by a lumped or distributed model. The 

measured subnetwork, arbitrary linear electromagnetic system, is often characterized by 

frequency-domain data using scattering parameters.

Although either the characteristic impedance or admittance can be used to describe a 

network, impedance and admittance functions are difficult to derive, approximate or 

measure accurately for arbitrary interconnects. The impedance and admittance parameters 

can acquire extreme values at integer multiples of one-fourth of the wavelength. However, 

scattering parameters, in addition to their unique meaning, are stable parameters readily 

available from full-wave electromagnetic analysis or measurements. Scattering parameters 

of complex structures can be measured with high accuracy using one of the commercially 

available network analyzers. Scattering parameters can also be derived from TEM, quasi- 

TEM  or frequency-dependent R, L, C and G parameters. The choice of an appropriate 

reference system to make the scattering parameters smooth function that is easy to 

approximate is discussed in Chapter 6.
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Transfer function approximation is used to obtain the reduced-order model of the 

measured subnetwork. The transfer functions of port (ij)  can be given in a pole-residue 

form as

= . K  '  (S.!)

where pr and kr are complex poles and residues, and k represents any direct coupling 

between the input and output. Once the pole-residue pairs are determined from the above 

equations, each subnetwork is treated as a multiterminal device in the MNA matrix of the 

global network.

In the following section, we will describe the method of approximating the 

scattering parameters of a subnetwork by a rational function over normalized and shifted 

frequencies.

5.3 Approximation

Polynomials are the simplest and most common means of approximating functions. 

Although the existence and uniqueness of polynomial interpolations of arbitrary data can 

be proved using the Weierstrass approximation theorem, polynomial functions are not 

used to approximate transfer functions of networks. Polynomials are not suitable to 

represent frequency responses of electrical networks, because polynomials do not work 

well in approximating the behavior of functions near their poles. In contrast, rational 

functions do capture the behavior of networks around the poles and their partial fraction 

expansions can readily be used to obtain the time-domain responses as sums of 

trigonometric and/or exponential functions. Hence, the transfer functions of electrical
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networks can be approximated for the least maximum error by rational functions rather than 

by polynomial functions of comparable order.

The idea of approximating arbitrary functions using rational functions is quite an 

old problem [73], [102]-[105]. Rational function approximations in partial fraction 

expansion form, unlike polynomial approximations, are not linear spaces; the calculation of 

rational approximations is more difficult than the calculation of polynomial approximations. 

Determining network functions and the associated zeros and poles is not only time- 

consuming, but also subject to problems of great numerical inaccuracy. The computational 

procedures are numerically sensitive and limited by the precision of the computer. The 

approximation matrices are ill-conditioned, and the calculation of the polynomial 

coefficients involves costly nonlinear optimization.

The recent developments of new methods that are based on direct representation of 

lossy transmission lines using transfer functions have regenerated considerable interest in 

accurate and efficient techniques to determine the poles and zeros directly from the time- 

domain or frequency-domain responses [70]-[72].

In [20], [71] and [104], partitioned or section-by-section approximation over a 

smaller domain is proposed to avoid the numerical ill-conditioning of the rational 

approximation. The frequency range is partitioned into sections and a low-order 

approximation is applied in each section. Once an approximation is obtained in a section, 

the value of the approximation function is subtracted from the corresponding data, and the 

resulting data are again fitted using the next section. The procedure is repeated until the data 

in the last frequency section are approximated. Then, the entire procedure starting from the 

first section is repeated until the approximation converges. Although this method constructs 

better conditioned matrices, the process can introduce some erroneous dynamics when 

subtracting the results of already computed approximations from the exact data. 

Consequently, the convergence of the method can be extremely slow when the method is
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applied to complex or periodic data. The method can be used to provide a good match with 

aperiodic data.

In [19], a rational interpolation algorithm is used for optimal transient simulation of 

transmission lines. The method is global in the sense that one rational approximation is 

used over the entire frequency range. The method is very efficient and gives good 

approximations for most practical problems. When higher-order approximations of 

complex systems are sought, however, the method has numerical inaccuracies due to the 

ill-conditioning of the matrices and the normal equation method the algorithm employs to 

obtain least-squares solutions. In this work, optimal conditioning, Householder orthogonal 

triangularization, and automatic adjustment of order approximation are introduced to 

guarantee the existence of a stable, rational approximation of a complex system over a wide 

approximation domain.

5.3.1 Interpolation by rational functions

A network function H(s) of a linear system can be approximated by a rational

function that interpolates the given function at given points. The rational function can be in

a pole-residue, pole-zero form or as a ratio of polynomials. Suppose the network function,

F(sj, given either analytically or at given points {s j ,  is approximated by a rational

function of degree ( $ )
rr <2c(s,) q0 + q ls + q2s 2 +... + q.s*

= =------------------’-------------- r  <5 -2)(■*,-) 1 + p xs + p 2s- +... + p 0s

with p„ normalized to unity. Equation (5.2) contains n=%+d+I free coefficients, hence, at 

most n independent parameters. The coefficients are determined so that the approximating 

function evaluated at the same frequency points gives close approximations to the function 

F(s). For specified finite functional values y,=F(j(), (i=0, ...k - I ) and k specified distinct 

points, s(, the resulting equations give
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M i l - y ,  = o (5.3)

By canceling the denominators in (5.3), one obtains the linear homogenous system 

of k equations in n unknowns:

Qi (si ) - y iPa(si ) = 0 (5.4)

which can be written in a matrix form as
? o '

<7.

1 s0
1

^0 ■*0
■A

rlfc?i£i

so y„ " y 0 '

1 5,
n

si  • • •  J* - s dv = y,

*> s Pi
J  sk-l •• st-i

"I11 
7 

,
 ̂

1 

1

0 ‘i
V

r  2
Y

-Po.

(5.5)

X

The solution of the system is not guaranteed, in general. The linear problem in (5.5) 

is not necessarily equivalent to the interpolation problem in (5.3). The rational function 

does not necessarily satisfy the interpolation conditions if the denominator polynomial has a 

zero for one of the given abscissas s{. As a consequence, the numerator polynomial must 

also have the same zero, so both polynomials have a common linear factor (s-sj that 

cancels. The resulting rational function will generally no longer satisfy the interpolation 

condition for sjt as ffts jfty ;. Hence, the interpolation problem has no solution for the 

prescribed degrees £ and #  of the numerator and denominator polynomials, respectively. 

In this case, the order of approximation has to be adjusted to guarantee the existence of the 

solution.

To find the conditions under which a solution exists, it is important to point out that 

the columns of V form independent vectors; hence, V is full-rank. The rank of the matrix 

V eR kxn, given by (5.5), is equal to min(n,k). There are two possible situations: (1) k > n ,
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and (5.5) is a full-rank overdetermined system, (2) k < n  and (5.5) is a full-rank 

underdetermined system.

The first case is an interpolation problem, and the case k>n can be reduced to the 

case k=n by writing (5.5) in an appropriate form. For the k=n problem, (5.5) is consistent

the second case, k<n, there is, in general, an infinite number of solutions. The complete 

solution set is given by

where b is arbitrary.

For higher-order approximations over a wider approximation range, the system in 

(5.5) is highly ill-conditioned and nearly singular because of the large difference between 

the maximum and minimum frequencies raised to the order of approximation. Even with 

proper frequency normalization, the computational procedures are limited by the numerical 

range and precision of the computer. The numerical considerations are discussed in detail in 

Section 5.3.3.

5.3.2 Approximation of a network function

The approximation algorithm can be made more efficient and accurate by utilizing 

the special properties of network functions. For instance, constraints necessary to insure a 

physically realizable passive network require that the transfer function be a rational fraction 

of polynomials in s. The coefficients of these polynomials must be real, and all roots of the 

denominator polynomial must have negative or zero real parts.

In addition, network functions are analytic functions of a complex variable; hence, 

their real and imaginary parts are related by the Cauchy-Riemann equations. In an electrical 

network, some constraints remain between the frequency variations of resistance, 

reactance, conductance and susceptance, just as in the Kramers-Kroning relations between

for any Y e R ", and X  = V ‘Kis the unique solution, where £  6 R ^ is  reformulated V. In

(5.6)
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real and imaginary parts of permittivity. The locations of zeros and poles of a passive 

network are constrained to the left-half complex frequency plane due to the analytical 

property of the network function. Thus, the response of a passive network can only decay 

in time from any transient initial state. The consequence of this property is that only the real 

part, imaginary part, angle, or magnitude of the network function have to be approximated 

and the network function itself can be found from the resulting approximation.

Next, we will discuss the procedure for determining a network function as a 

rational function of s, using the real parts of the function.

The real part of a network function (5.3) can be specified as the even part of H(s) 

replacing -s2 with o r. The real part of the original function is fitted with the real rational 

polynomial function of the squared variable

Re(ff, ,(*)) =
c0 + c ,5 ‘ + c 2.y +... + C.J"’

1 + p xs l + p2s* +... + p 0s 20
(5.7)

Because the poles of the even function of F(s) are those of both F(s) and F(-s), 

those belonging to F(s) lie in the left half-plane. Thus, the denominator coefficients of 

H(s) in (5.2) can be obtained from (5.7). The following system of equations results from 

matching the real parts of the original function with (5.7) at the set of frequencies

'l co\ ©o4 •-  Off -®o-vor -"o^o ••• - c o ly r0
ci

y0r
1 col cot ••• col -cot>\ 4 r

~cO\ y, •■■ -cofyl ylcc * —

1 col 1 col 1 ••• col I - c o l j l , - c o h y l , •
Px
Pi y l  i.

P*.

where the superscript “r” indicates the real part of a complex value.

(5.8)
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The conditions for the existence of the solution are as stated in Section 5.3.1. Once 

the coefficients of the denominator polynomial are obtained from (5.8), the roots of the 

denominator are calculated from

The poles are assumed to be distinct. Repeated poles are not likely because of the 

nature of the problem and the fact that the poles are computed numerically. If repeated poles 

are obtained they can be modified to make them distinct.

Factoring the denominator and taking only the left half-plane roots, the partial 

fraction expansion of the transfer function is constructed. Not a single unstable (positive) 

pole is obtained, because the polynomial roots are determined in terms of the square poles. 

The purely imaginary single poles on the imaginary axis are rejected as spurious because 

the rational function in (5.8) has double poles. Hence, the order of the approximating 

function must be set to a value greater than or equal to the actual order sought. The 

remaining negative poles are used to formulate the stable partial fraction expansion of the 

transfer function as

where t?' < #  and d  -  tf'are  the numbers of rejected, purely imaginary poles.

Solving for residues using only the stable poles gives a better approximation than 

the approach in [106] where the unstable poles with the associated residues are discarded at 

the final phase. No error is introduced in discarding the erroneous poles because the 

residues are calculated by matching the function using the remaining selected poles.

In the next section, a method for further reducing the remaining poles using the 

pole-clustering technique is discussed. The inverse distance-measure criterion is used to 

give more weight to the dominant poles closest to the jco-axis in each cluster.

l + p lco2 + p 2Ct) 4 +--- + p 0Q)20 = 0

£  k, (5.9)
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Matching the real and imaginary parts of each element of the original matrix 

transfer function with the corresponding parts of the elements of (5.9) at the set of points 

leads to the following set of linear system equations

~Pi
® o + P {

~Pi

- P i  
Co]-1 + P i  

- Q ) 0

+ p I

-°>k-i
+ p I

-P a
+ p I

- P o
o) I + pI

- P o
0)1-1 + PI 

- 0)  0

0)1 + pi

- 0) t - 1 

0)1-1 + p I

'km

a .

T

Sl

•t-l

St-1

(5.10)

M
where the superscripts “z” and “r” indicate the imaginary and real parts of a complex 

value, respectively. The solution of (5.10) gives the partial expansion coefficients, k^s. 

Arbitrary dc and steady-state values can be assigned prior to the approximation.

5.3.3. Numerical considerations

The transposed Vandermonde-Iike matrix in (5.8), even for moderate order, is 

notoriously ill-conditioned in the sense that the entries along each row are simple powers 

of the corresponding frequency values. If the span of the frequencies being considered is 

large, then the magnitudes of the entries on some of the rows will be much larger than 

those in rows corresponding to low frequency values. The application of a direct- 

elimination algorithm to solve the Vandermonde-type system in (5.8) produces unreliable 

results.
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The unequal scale of the rows of V suggests that there is some artificial ill- 

conditioning in the problem. The artificial ill-conditioning can be removed. The condition 

number can be improved by normalizing the maximum frequency to unity. The condition 

number can still be uncomfortably large, though good enough for practical purposes, and 

intolerable for a wide frequency range or high-order approximation. This ill-conditioning 

is real and will not disappear with any further rescaling. On the other hand, posing the 

problem in a shifted basis using the transformation,

2(03 —  0)  )O) — —--------E2L1-1, (5.11)
" m a x  “ ® m i »

leads to a better-conditioned problem. Mapping the domain ^nm ] to [-M ]

normalizes the domain variable to the center within the numerical range of the computer and 

minimizes numerical inaccuracies in the solution process.

The minimum number of samples for the interpolation is (c=n. Because the number 

of equations is often larger than the number of unknowns, Equation (5.8) can be 

transformed into a square matrix using the method of averages [19]. The method of 

averages is used to obtain a consistent system by adding consecutive equations from the 

system of equations in (5.8) into n groups. Due to numerical difficulties, solving the 

consistent equation obtained from (5.8) using the direct method, we need an alternative 

method that does not require a direct elimination method. We seek to transform the problem 

into a more numerically robust equivalent one, yet still produce the solution. Any matrix 

can be decomposed in the form V-QR, where Q is orthogonal and R  is an upper-triangular 

matrix. For a general matrix, the decomposition is constructed by applying a series of 

Householder reflectors that zero out all elements in a given column to transform the matrix 

to a triangular form. Just as in an LU  factorization, Householder QR factorization can be 

obtained in (n-1) steps. However, unlike the Gaussian elimination process, the
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Householder QR decomposition can always be carried out to completion. Then, the 

solution of the following triangular system

R X  = Qt Y (5.12)

is obtained more accurately.

The orthogonal-triangularization method is unconditionally stable; there is no 

growth factor  to worry about, e.g., the growth of the elements in the reduced matrices, as 

in Gaussian elimination [107]. For the ill-conditioned problem, the orthogonal method 

gives an added measure o f reliability. Even if the matrix is not full-rank or the system is 

near singular, the orthogonal factorization still exists. The decomposition of a matrix gives 

a nonsingular, upper-triangular matrix whenever the column vectors of V  form a linearly 

independent sets of vectors. Thus, the triangular system (5.12) can be solved to high 

accuracy. The method is comparable with LU  factorization in efficiency. It has a 

computational complexity o f In* /3 , and the cost for the triangular system is only 0 (n 2). 

The right-hand side of (5.12) does not need Q explicitly; the Householder matrices are used 

to obtain QTY.

The method is also known as the Golub-Householder method because the idea of 

solving the least-squares problem based on the QR factorization of V using the 

Householder transformation was first suggested by G. Golub [108]. For a matrix V e R ktn 

with rank(V)=n and the vector matrix Y eR k, the Golub-Householder method computes the 

least-squares solution X e R n using Householder matrices H, through H n, with the cost of 

n 2( k - j ) .  The matrix is decomposed as V= H, H2 ... Hn_, Hn R, and then the right-hand

side is modified as QTY=Hn ... H2 H, Y. The pseudo-code for the Golub-Housholder 

method is given in Algorithm 5.1.

A lgorithm  5.1: Golub-Householder method

G olub_H ouseho lder (V ,Y )

Step 1) Apply Householder factorization:
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V= H , H 2 H H „  R

Step 2) Modify the right-hand side 

H n H n_x H 2 H X Y =
l A

where Y ,e R n, and Y2e R kn.

Step 3) Solve R X=Yt.

The residue calculation step does not have numerical problems. The system of 

equations in (5.8) is better conditioned, because the entries of the matrix are of the form 

~Pj (cof + p) )~x ■ In [19] and [109], the least-squares solution is obtained using the normal

equation method. Because the normal equation method has numerical difficulties, the 

matrix MTM  is frequently ill-conditioned and influenced greatly by round-off errors. 

Instead, the solution of (5.10) is obtained using Householder QR orthogonalization.

The approximation problem is solved by building up and solving a linear system of 

equations. It is obvious that this requires only a small amount of CPU-time, especially 

because the system is rather small. The total computational complexity of the approximation 

method is one polynomial factorization, two Householder QR transformations, and two 

backsubstitutions. The algorithm is given in pseudo-code in Algorithm 5.2.

A lgorithm  5.2: Rational interpolation.

R_A pproxim ation  ( co, F, t;, &)

Step 1) Normalize and shift frequency points

to map [<2)min, c o ^  ] into [-1,1] using Equation (12).

Step 2) Construct real matrix o f the real part o f the function Equation (7): 

V e  , X e  R n , Y e  Rk

Formulate square matrix using the method of averages:

V e R nxn, X , Y e R K

Perform Householder QR factorization: V = Q R
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Solve: R X  = Q TY 

Step 3) I f  solution is not acceptable,

select new order o f approximation , I;'and and repeat Step 2. 

Step 4) Factor denominator and filter the poles,

i f  the remaining poles are unacceptable, go to Step 3.

Step 5) Construct residue matrix Equation (9).

Perform Householder QR factorization: M=QR 

solve: R  X  = Q t Y 

Step 6) Return partial fraction expansion

5.4 Model-Order Reduction Using Pole-Clustering Technique

The system obtained from the approximation of a distributed system can have a 

higher order. The incorporation of such a large model into the global system matrix can 

result in a computationally expensive simulation. In most cases, the system in (5.9) can be 

reduced to a low-order model with slight degradation in accuracy. The approximation 

method described in Section 5.3, unlike the partitioned-approximation method proposed in 

[20], [71], and [106], rarely fits models of higher order. However, because the 

approximation method is a technique for fitting a function rather than simplifying models, 

the reduction steps can be necessary. One of the standard reduction methods can be used to 

obtain a low-order model.

Once the finite-partial expansion of the system function is determined, the system 

matrix corresponding to the approximating function can be realized by a linear time- 

invariant system as
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x  = Ar + Bu 
y  = Cx + Du

(5.13)

where

(5.14)

A = diag(pt ,p 2,.. . ,  pn)

C = (sign(kt ) ^ j , sign(k2 )^j\k7\,. . . ,sign(tcn ) ^ J )

D = k„

Then, the system matrix is further reduced by applying one of the standard 

techniques to obtain a low-order model [110]-[112],

The object of model reduction is to obtain the equations

Xr =  ArXr +  Br“ r « n (5.15)
V'r = CrXr + Dll

where the matrices A , Br, and Cr are to be selected in such a manner that the model output 

yr(t) is, in some predefined sense, a close approximation to y(t) for all admissible inputs 

u(t). The reduced model of Equation (5.15) is chosen where the components of the system 

that make little contribution to the overall response of the system can be discarded. 

Although this can be done in several ways, perhaps the most common method is the 

balanced transformation, first introduced in control theory by Moore [110]. Here, the state 

vector is partitioned into a slow part and a fast part so that Equation (5.13) takes the 

following balanced realization form:

(5.16)

=

1
> > l-J

1

V + ' V
x 2 ^2i ™22 -X2_ A .

y, = [c , c 2] + Du

For a stable system, tht fa s t  modes decay much more quickly. The contributions of 

the fastest mode are important only at the beginning of the response; whereas, the retained 

dominant modes are important throughout the whole of the response that the system will 

have. Thus it is permissible to eliminatexz to obtain a reduced-order model. In [106], this
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approach is used to reduce the order of the intermediate system obtained from section-by- 

section approximation.

Although the balanced-matrix method is elegant and preserves the dominant 

eigenvalues of the original system, it does not always maintain the correct dc gain. It is also 

computationally intensive. It requires the solutions of two Lyapunov equations and the 

computation of the eigenvalues and eigenvectors of the intermediate system [113].

A less computationally intensive and a more accurate order-reduction method is 

based on pole-clustering techniques. The basic idea of the approach is that a low-order 

model is obtained by matching the frequency response of the original system. The poles of 

the low-order model approximate the effects of two or more clustered poles of the original 

system using the appropriate residues. The poles of the intermediate higher-order system 

that are clustered in certain areas can be grouped into several clusters. These clusters are 

then replaced by respective cluster-centers that are obtained by using an inverse distance 

measure criterion. This clustering is done only on the poles before determining the 

associated residues. After the cluster-centers are determined, the residues are calculated 

using Equation (5.10).

Recently, Sinha and Pal [114] used the inverse distance-measure (IDM) criterion 

for obtaining the cluster-centers of poles and zeros. The IDM gives larger weights to the

poles near the jco axis in determining the cluster-centers because these poles have dominant

effects on the system behavior.

The poles are first partitioned into clusters by identifying the larger jumps in the real 

and imaginary values of the poles. Separate partitions are formed for real poles and 

complex conjugate poles. Then, the complex conjugates of the cluster-centers are 

generated. The cluster-center for each partition is calculated as
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where P0 is the cluster-center, and p.’s are the poles in each cluster.

The poles are replaced by the cluster-centers and the corresponding residues are 

calculated using Equation (5.10). The procedure for generating the cluster-centers are given 

in Algorithm 5.3. The poles of the original system and the cluster-centers are shown in 

Figure 5.2. The 26 poles of the original system are replaced by eight cluster centers.

A lgorithm  5.3: Calculating cluster centers

1) Collect the real and complex poles in separate groups.

2) Calculate the distance between the poles.

3) Partition the poles into r clusters.

4) Using Equation (5.17), calculate the cluster centers

A
V

-  10

-  15

-2 .5 0-17 .5  -1 5  -12.5  -1 0 -7 .5 5
Real part- 10"10

Figure 5.2: Locations of poles of original system (diamond) and the cluster- 
centers for reduced- order model (star) in the complex plane.
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5.5 Recursive Convolution

We established the fact that the transient response of an electromagnetic system can 

be approximated by the exponential functions in the time domain or rational function in the 

frequency domain. In the preceding sections, we have successively derived a robust 

frequency-domain, rational-approximation method for the transfer functions of 

electromagnetic systems. The response of the system for arbitrary input is obtained in the 

form

Y(s) =
v .=i S~P,

X(s) (5.18)

ff(t)

where X(s), Y(s) and H(s) are the Laplace domain input, output and transfer functions of 

the system, respectively. The time-domain response is obtained by calculating the 

convolution integral given as

y(t) = .v(t) h(t — x) dx  (5.19)

where x(x) and y(x) are the input and output to the linear system, respectively, h( x) is the

impulse-response or the kernel function of the system, and y(t) is the output. The 

convolution integral in (5.19) becomes progressively more expensive as the time-domain 

simulation time increases. For a total of N  timepoints, the total cost of the convolutions is 

0(N2). Because the transfer function of the system is expressed as a sum of partial-fraction 

expansions (5.9), the time for the numerical convolution in (5.19) can be greatly reduced 

by taking advantage of the recursive convolution.

The advantage of a recursive convolution for calculating the switching response of 

frequency-dependent transmission lines was first recognized in the early 1970’s by power 

and systems experts [115], In 1975, Semiyen and Dabuleanu developed the recursive
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convolution and showed its computational efficiency and usefulness [116]. In [[19], [57] 

[109], [116], recursive convolution is used as an efficient method for transient simulation 

of transmission lines.

Recursive convolution has linear time efficiency and reduces computation time by 

as much as one order of magnitude, while preserving the accuracy. In fact, recursive 

convolution improves accuracy, because it does not suffer from truncation errors as in the 

explicit convolution. The stability and convergence of recursive convolution depend on the 

system equation and the input.

5.5.1 Derivation of recursive-convolution equations

The efficiency of a recursive convolution comes from the fact that the impulse 

response of the system can be written as a series of exponential functions. For exponential 

kernel function, the convolution integral (5.19) at time r can be written as

*  f e / v  v ( 0 )  +  Jqv(0 = k„ x(t) + X ( ^ ''y ( 0) + *(r) drj  (5.20)

The convolution integral can be decomposed into

r

v(0 = K x(t) + £
t=l

e p‘Sn[ep'u-*)y(0) + J* x(x) d r ] + J~k te P l .v(t ) dx

V, (/—&>

where y, ’ s are the values of the convolution integral associated with the pole p. s.

Therefore, Equation (5.20) can be written in terms of the last response and a single 

time-step convolution as

y(0 =  *„ * (0  + £ ( e ft* t t ( f - & )  + J “ M ft' x { t - T ) d x }  (5.21)

The convolution integral in (5.21) can calculated by adding the scaled values of the 

integral values corresponding to poles at previous timepoint and a single time step 

integration that can be reduced to algebraic equation. The cost of recursive convolution for
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a total number of IV timepoints is O(qN). In general, N » q ,  the number of pole-residue 

pairs is much smaller than the number of time points in the total simulation time, the 

integration routine is linear in time, unlike the explicit convolution case which is quadratic 

in time.

Knowledge of the values of x(t) at a discrete number of points is not sufficient to 

specify y(t) uniquely by the above equation. It is necessary to make assumptions about the 

nature of x(t) such that its values at a discrete set of the points suffice to specify y(t) 

uniquely. In deriving the backward and forward Euler formulas, excitation is assumed to 

be a piecewise constant, x(t)=c, where rn_, < t < t n, and Equation (5.21) is solved using the 

values of the excitation at the current time interval as boundary conditions.

If the excitation is assumed to be piecewise linear in tn_x < t < t nas in the well- 

known trapezoidal method in linear multistep methods, Equation (5.22) becomes

The recursive convolution gives exact results if the assumption made about x(t) is 

valid; if not, the convolution formula has an error term. The local interpolation error is 

proportional to Of 8 f+l) where r is the order of x(t). The stability of the convolution method 

depends on the nature of the system impulse-response function, h(t). The convergence of

(5.22)

where

(5.23)

where

Pi S t n
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the convolution is exactly the same as the convergence of the assumed input to the actual 

input as the time steps go to zero.

Each entry in the submatrix of the scattering parameters o f the electromagnetic 

system is approximated by a rational function, and the inverse Laplace transform of the 

partial-fraction expansion or the pole-residue model is found symbolically. This 

corresponds to the macromodel stencils of the global MNA matrix conductance and current 

stencils. Equation (5.22) is implemented as a Norton-equivalent circuit consisting of a
<i

conductance of constant value, £„, and a current source, y, (tn), which is updated at
;=i

each time-iteration based on the pole-residue pairs and the voltage at a previous time point. 

If Equation (5.23) is implemented, both the conductance and the current sources are time 

dependent.

5.6 Numerical Results

A strip-like interconnect with a V-shaped ground plane is characterized using a 

scattering matrix [125]. The scattering parameters are measured in the frequency range 45 

MHz-10 GHz vvith a HP8510B vector network analyzer. The measured scattering 

parameters of the interconnect are approximated over a frequency range using a rational 

function. Although the method is able to generate a stable, very high-order rational 

approximation, a 24th- and a 27/Zz-order rational function are used to approximate S ,2 and 

S n , respectively. The measured and approximated scattering parameters are shown in 

Figures 5.3 through 5.6. The magnitude and phase plots of S l2 and S,,  are almost 

indistinguishable.

A comparison of our method with the method of [19] is shown in Figure 5.7(a). A 

measure of the quality of the approximations is the normalized numerical difference 

between the measured data and the rational approximations. The maximum error of the
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41st-order approximation, with respect to the original S n  data, is less than 0.8%. The 

order of approximation is limited to 41, because the direct-solution method o f [19] 

becomes numerically unstable when the order approximation is increased beyond 41. The 

4 1st-order of approximation of the proposed method is more accurate. The error in the 60 

th-order approximation of the proposed method is shown in Figure 5.7(b).

5.6.1 Example 5.1: Linear network

To illustrate the advantage o f our method, the network shown in Figure 5.8 is 

analyzed. The network consists of a measured subnetwork characterized by the 

approximated scattering parameters. First, the measured 5-parameters are extrapolated to 

low frequencies for the dc solution. Then, the scattering parameters are incorporated into 

the MNA matrix using conductances and dependent sources. Some of the implementation 

details associated with integrating the scattering matrix directly into circuit simulations are 

described in Chapter 6. The lumped-model subnetwork shown in Figure 5.8 is represented 

as a two-port network in the analysis. A twelfth-order Pade approximation of the 

admittance matrix of the lumped subnetwork is obtained using the Lanczos algorithm 

described in Chapter 3.

The network is exited by a pulse with rise and fall times of 0.3 tis and a pulse 

magnitude and width of 5 V and 4 ns, respectively. The transient responses of the network 

at nodes x  and y are given in Figures 5.9 and 5.10. The proposed method is compared 

with the conventional approach in which the exact response is obtained via IFFT. In 

addition, the application of IFFT for the time-domain solution requires that the scattering 

parameters be band-limited. This is realized using rational-function extrapolations. The fact 

that the two responses are indistinguishable shows that an excellent match has been 

obtained.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Measurement
Approximation0.95

0.9<L>
T 3

1  0.85 
to
I  0.8

0.75

0.7

0 2 6 8 104
Frequency, GHz

Figure 5.3: Magnitude plots of SI2, the measured data and the 24th-order rational 
approximation.
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Figure 5.4: Phase plots of Sl2, the measured data and the 24th-order rational 
approximation.
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Figure 5.5: Magnitude plots of S„, the measured data and the 27th-order rational 
approximation.
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Figure 5.6: Phase plots of S’,,, the measured data and the 27th-order rational 
approximation.
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Figure 5.7: (a) Magnitude plot of the errors, the 41st-order rational approximation usin 
the method in [19] (gray line), and the proposed method (dark line),

(b) magnitude plot of the errors, the 58 th-order rational approximation 
using the proposed method.
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Figure 5.8: Example 5.1, interconnect network with measured component.
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Figure 5.9: Example 5.1, transient response at node x.
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Figure 5.10: Example 5.1, transient response at node y.
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5.6.2 Example 5.2: Nonlinear network

In Example 5.2, the proposed method is used to study resistive and diode 

terminations. The network in Figure 5.11 consists of a measured subnetwork, a diode-pair 

termination and a resistive termination. For the measured subnetwork, the rational function 

approximation of the scattering parameters of Example 5.1 is used. The network is excited 

by a pulse with rise and fall times of 0.3 ns and pulse magnitude and width of 5 V  and 7 

ns, respectively. The network is simulated with the diode-pair termination and with the 5 K 

Q  resistor replacing the diodes shown in Figure 5.11. The transient responses of the diode- 

pair termination at nodes x and y are compared to those of 5K Q  resistor termination. At 

the far-end, node y, the voltage response of the 5K Q  resistor shows voltage overshoots 

and undershoots while the diode-pair termination squelch the voltage overshoots, as shown 

in Figure 5.12. The voltage waveforms at the near-end, node x, for the two cases are 

almost identical as shown in Figure 5.13. Thus, time-domain analysis of a nonlinear 

network can be performed efficiently using the method.

+5

1 0 Q  2 n H  1 0 f l  I n H
r V V V - n n n r r ^ W W w

Measured
Subnetwork

2 pFE(t)
5K Q

Figure 5.11: Example 5.2, diode-pair terminated network, 
(the 5 KQ  resistor replaces the diode-pair).
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Figure 5.12: Example 5.2, transient response at node y.
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Figure 5.13: Example 5.2, transient response at node x.
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5.7 Conclusions

In this chapter, a robust, rational-approximation algorithm is integrated with 

recursive convolution and network partitioning techniques for accurate and efficient 

transient simulations of arbitrary networks. Because o f its stability and simplicity the 

scattering parameters are approximated by rational functions and incorporated directly into 

the network MNA matrix without converting them into other fundamental parameters or 

parasitic parameters. The analyticity of a scattering matrix is utilized to obtain stable pole- 

residue pairs using two linear solutions and one polynomial factorization. This leads to a 

significant reduction in the computational cost when compared to the costly nonlinear 

optimization used in traditional methods [51], [52]. Frequency normalization and shift, and 

Householder orthogonalization techniques are used to obtain accurate approximations. The 

necessary numerical considerations in the actual implementation of the algorithm are 

discussed. The intermediate model further reduced using modified balanced transformation. 

The transfer function can be used for time- or frequency-domain analysis of arbitrary 

networks. Recursive convolution is applied to obtain time-domain macromodels directly 

from the scattering matrix approximation. The method avoids the use of time-consuming 

explicit convolution, numerical transformation and artificial low-pass filtering of sampled 

data with a large number of frequency points. Thus, the method does not suffer from 

aliasing and numerical errors. The validity and accuracy of the method for the transient 

simulation of linear and nonlinear networks are shown by examples.
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CHAPTER 6

ANALYSIS OF FREQUENCY-DEPENDENT 
COUPLED TRANSMISSION LINES

6.1 Introduction

The transient simulation of high-speed analog and digital integrated circuits require 

the analysis of frequency-dependent transmission lines. The frequency-dependent 

behaviors of transmission lines such as losses and dispersions are accurately represented in 

the frequency domain, while the determination of transmission line delays and noise 

requires the time-domain simulation of a nonlinear network often used as drivers and 

terminations. In order to resolve this dilemma, most analysis programs use numerical, 

inverse-transform techniques to go back and forth between frequency and time domains.

Traditionally, a transmission line is modeled by cascading a large number of 

resistors, inductors and capacitors. The method introduces a large number of nodes that 

greatly increases the simulation time. This equivalent-circuit based method introduces 

excessive ringing and can give accurate results only in a limited frequency range.

The lumped-element circuit models must be supplemented to account for frequency- 

dependent effects in transmission lines. The method of characteristics, introduced by 

Branin [37], can be used to simulate lossless transmission lines in the time domain.
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The method transforms the telegrapher’s equations into ordinary differential equations that 

can be easily solved [39], [40]. For lossless and distortionless transmission lines the 

ordinary differential equations can be integrated analytically [38]. In a distortionless 

transmission line, the ratio of the dc resistance and the dc conductance is equal to the 

square root of the characteristic impedance. The method is extended for lossy lines by 

using numerical techniques [41]. The method cannot be easily applied to analyze 

frequency-dependent behaviors such as the skin effect and dielectric losses. The most 

general approach for simulating transmission lines is based on the convolution method 

[42]-[45], The impulse responses of transmission line systems are used to solve the 

nonlinear convolution equations governing the interconnects and nonlinear drivers and 

terminations [45], [118], [120]. The convolution requires the inverse transforms and band- 

limit filtering of a large number of points in order to minimize aliasing and unwanted 

ringing. The method is computationally expensive and cannot be used for large systems. 

When the convolution method is applied to low-loss or lossless transmission lines whose 

time-domain impulse response can be infinite in length, the Gibbs phenomena and aliasing 

errors can accumulate leading to convergence and numerical stability problems.

An efficient synthesis technique of the characteristics of distributed systems based 

on reduced-order rational approximation is presented in Chapter 5. The method generates 

finite-dimensional, reduced-order models of distributed systems using a combination of 

rational approximations of infmite-order systems and a modified balanced realization of the 

approximating finite-order systems. The distributed systems are represented as multiport, 

pole-residue models and are combined to form the system matrix to handle nonlinear 

elements. The equation describing the transmission line system is formulated using the 

scattering matrix and an optimal reference system. The scattering matrix is approximated 

using a rational function, and recursive convolution is applied to convert the rational 

functions into macromodels of multiterminal networks that can be used as system matrix 

stamps. The approach bypasses explicit convolution, inverse Fourier transforms, and
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low-pass filtering of a large number of points in order to avoid aliasing and time-domain 

ripples associated with the transformation of data between the frequency and time domains. 

The circuit representations of the transmission line system using Norton-equivalent circuits 

with a conductance and a time-dependent current source are compatible with those of 

conventional time-domain simulators, such as SPICE and ASTAP or with methods based 

on reduced-order techniques such as AWE, CFH, and PVL.

In Section 6.2, the eigen-analysis of a transmission line equation is described. In 

Section 6.3, the scattering formulation of a transmission line system is presented. In 

Section 6.4, an efficient simulation technique using recursive convolution is presented. 

Examples of linear and nonlinear networks are given in Section 6.5. The conclusion is 

given in Section 6.6.

6.2 Transmission Lines Equations

The transmission lines, shown in Figure 6.1, are expressed with coupled partial 

differential equations relating the voltages and currents on the transmission lines given by

d d
—  v(x,t) = - M ( x , t ) -  L— i(x,t)
dx dt ( 6 1 )

- i ( x , t )  = - G  v(.r, t ) - C — v(x,t) 
ox dt

where R , L , G ,  and C are the resistance, inductance, conductance and capacitance N x N  

matrices per unit length, and v(x,t) and i(x,t) are N x l  voltage and current vectors, 

respectively.

It is convenient to write Equation (6.1) as coupled, ordinary differential equations 

using Laplace transform as
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where Y(s)=G(s)+sC(s) and Z(s)=R(s)+sL(s) are the admittance and impedance per unit 

length, N x N  matrices of the transmission line systems, respectively. The frequency- 

dependent parameters o f transmission lines can be described using Equation (6.2).

Combining the ordinary differential equations in (6.2) produces a set of second- 

order differential equations given by

^ -V (x,5) = Z(j ) Z(j ) K(.t,.y)

*  (6-3)
—  Kx,s) = Y(s)Z(s) l{x,s) 
dx

In general, Equation (6.3) has N-sets of possible solutions corresponding to N- 

propagation modes of the iV-coupled transmission lines. These modes or the eigenvalues 

and eigenvectors associated with the soludon are related as

EZYE-' = A2
, " (6 -4 ) HYZH = A2fti

where Am is a diagonal matrix with the square root of the eigenvalues of Z Y  as diagonal 

entries, and E  and H  are the matrices of the associated eigenvectors of Z Y  and YZ, 

respectively. The eigenvectors are used to transform Equation (6.3) into decoupled 

equations as

^  , (6 '5) —  [(x,s) = A2J m(x,s)

where Vm=EV and lm—HI  are the modal voltages and currents, respectively. Various 

approaches can be used to solve Equation (6.5). The general solution of Equation (6.5) can 

then be obtained as
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Vm(x) = y /( -x )A  + y ( x ) B  

L  M  = K  [vr(-Jtr) A -  Y(x) B]
(6.6)

where y/(x) = diag[ePlX,e^'x /), is the complex propagation constant associated

with the /th mode and is the ith eigenvalue of ZY, and Zm =A ~^EZH~X is the modal 

characteristic impedance of the transmission line system. The variables A and B are the 

coefficient vectors associated with the forward and backward traveling waves on the 

transmission lines. They are determined from the boundary conditions; the terminations at 

the ends of the lines.

6.3 Scattering Parameters Formulation

Transmission lines are often characterized by parasitic parameters such as 

resistance, inductance, capacitance and conductance per unit length. These parameters are 

difficult to approximate . The approximation of the characteristic impedance and admittance 

parameters are prone to numerical instability and acquire extreme values at integral 

multiples of one-fourth of the wavelength. For example, the impedance of a line with no 

shunt loss tends to infinity. An arbitrary transmission line system can be described in the 

frequency domain using scattering parameters. The magnitude of the scattering parameter is 

limited to one. Another advantage of the scattering-parameter formulation is that by 

choosing an appropriate reference system, the scattering function can be made smooth and 

simple enough to approximate with low-order, rational functions.

The analysis of rV-coupled transmission lines characterized by scattering parameters 

is done using the following incident and reflected voltage wave definitions:

1 1 1
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A,(y<u) = ^{Vt{jcQ) + Z ^ / , 0 ) )  

BiU»» =  “ (v;(ya») -  ZrefIt(jo)))
(6.7)

The impedance matrix describes the reference impedance of an N-port network 

and is used to describe the scattering parameters in the calculation or measurement of the 

scattering parameters. The scattering matrix relates the incident wave to the reflected wave 

matrix shown in Figure 6.2 as

where 's are N xN  scattering matrices describing the transmission line system and A, ’s 

and B /s  are the forward and backward waves, respectively. In order to be able to handle 

the nonlinear devices, the time-domain formulation can be obtained by inverting Equation 

(6.8) resulting with the convolution given as

where a /s  and b/s  are the time-domain wave vectors associated with A ,’s and B /s ,  sAs  

are time-domain scattering matrices, and * is used to denote convolution.

The A/-port scattering parameters of complex interconnect structures can be obtained 

from frequency-domain measurements with high accuracy by using one of the 

commercially available network analyzers. They are easier to measure over a wider 

frequency range using careful calibration techniques. The /V-port, time-domain impulse 

response can also be obtained from reflection and transmission measurements using a high

speed oscilloscope with TDR and TDT options.

It is possible to calculate the scattering parameters of an arbitrary transmission line 

system using full-wave analysis techniques. For example, one FDTD simulation can 

generate the time-domain scattering matrix and eliminate the adverse effects from the 

imperfect boundary conditions. The corresponding frequency-domain scattering parameters

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

By — S^A, +.S12A2

B2 = S2l A[ + ^ 2 2  A,
(6 .8)

b{(t) = sn * a{(t) + sX2 * a2(t) 
b2(t) = s2x * a ,(0  +  .^: *a2(t)

(6.9)
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are defined in terms of the Fourier transforms of the ume signatures of the incident, 

reflected and transmitted waves.

Scattering parameters of transmission can also be derived from TEM, quasi-TEM or 

frequency-dependent parasitic parameters, resistance R(jco), conductance G(jco), 

capacitance C(jco), and inductance L(jco), per unit length. The multiport scattering 

parameters can be obtained using the eigen-analysis described in [118]. By matching the 

line voltage wave vectors at the transition planes between the reference and transmission 

line system shown Figure 6.2, the scattering parameters are derived (also derived in 

Appendix A).

The line scattering matrices are given by

s.. =s„ =r-l(r-'FnF)(i-rpnp)'1r
, ( 6 . 10) 

Sl2 = S2l = 2E~l ( I - T ) vF ( l - r P P F ) -1 T

where
r  = (I + E E ;'Z„H0H " Z - ' )■' (I - E E ; '  Z ,H aH '<Z 'J )

T = (i + E E ;'ZaH , H - 'Z - j y ' E  

n - D

and Z0 is the modal impedance of the associated frequency-independent reference 

impedance given by Z0 = A~0' E0 L0 H ^1, where A 0 is a diagonal matrix with the square

root of corresponding eigenvalues as diagonal entries and E0 and H0 are the matrices of the 

eigenvectors associated with L0 C0 and Q L0 of the reference system. Because the reference 

system is an arbitrary nonphysical system, its parameters are selected to give smoother 

scattering parameters that are easy to approximate. The optimal choice for the inductance 

and capacitance per unit length of the reference line system is L0=L and C0=C, 

respectively. For example, the scattering parameters of a lossless coupled-line system can 

be simplified to
S„ = S 22 = 0  
S,2 = S2I = ¥
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Figure 6.1: General representation of an n-coupled transmission line system.

Arbitrary
Network

Reference 
System

— fc?___

— Gl

Bi
h - e n

K

^o> C0 
Port 1

x=0

Transmission Line 
System

R, L, C, G

Reference
System

H I T — Q

H B —

K

b 2

2 5 -
X=1

^ 0 ’ C o  

Port 2

Arbitrary
Network

Figure 6.2: A network of n-coupled transmission line system, reference system, 
and arbitrary networks.
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6.4 Simulation Techniques

Although the time-domain scattering parameters of an interconnect system can be 

approximated by a polynomial o f exponential functions using such methods as Prony’s or 

Pencil-of-function, the approximation procedures involve costly nonlinear optimization 

[121], [122]. Because interconnects are primarily linear and their parameters are simple 

functions of frequency, they are well-characterized in the frequency-domain. The 

frequency-domain approximation is more efficient and can give better results. Hence, the 

transfer functions of interconnect systems can be approximated by the least maximum error 

using rational functions described in Chapter 5.

The scattering parameters can be approximated by rational functions with high 

accuracy. The convolution in (6.10) can be done very efficiently using the recursive 

equation presented in Chapter 5. The convolution Equation (6.10) can be reduced into 

linear operation that involves a simple update of parameters at each time point. The 

relationship between a^s and b ’s is described as

where the matrix entries are the coefficients at time point tn determined from the pole- 

residue models of the scattering parameters and the recursive convolution formula.

The terminal currents and voltages at the transmission line ports are obtained by 

writing the incident and reflected waves as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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ai = \ ( v, + Z0 i,)
: (6.i2)

bi = ’j ( v< ~ Z q i,)

Substituting (6.12) into (6.11) at time point tn gives the relationship between the 

terminal voitages and currents as

i(tn) = Z0-‘( 1 + KJT' (1 -  Km) v(tn) -  2Z0- ‘(1 + K J~l b{tn) (6.13)

Equation (6.13) can be implemented into circuit simulators as conductance and 

time-dependent sources as shown in Figure 6.3. For a piecewise constant excitation, the 

conductance and time-dependent current values are given by:

G = Z0- l(l + t f „ r ‘ (1-A TJ
(6.14)

y ^ z - ' o + K j - '  b{tn)

Figure 6.3: Norton-equivalent representation of Equation (6.13), at time tn.

6.5 Numerical Results

To verify the capability and illustrate the advantages of the method, representative 

examples are presented. Some of the implementation details associated with the method are 

also described.
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6.5.1 Example 6.1: Lossless coupled transmission lines

As mentioned in the introduction, methods based on convolution have problems 

dealing with low-loss lines. The situation can lead to an infinite response that results in 

expensive computation and numerical inaccuracies caused by the accumulation of errors 

from convolution and IFFT of a large number of points. An example of a three-conductor 

system taken from [39] and [73] is shown in Figure 6.4. The capacitance and inductance 

per unit length are, respectively,

C =
1.0413 -0.3432 -0.0140'

-0.3432 1.1987 -0.3432
-0.0140 -0.3422 1.0413

pF  /  cm

L =
3.8790 1.6238 0.8252 
1.6328 3.7129 1.6238 
0.8252 1.6238 3.8790

nH  / cm

and simulated using the method developed above. The simulation results are compared with 

measurement results. The S-parameters are measured using an HP8510B network analyzer

with a time-domain option. The 6x6  time-domain, impulse-response matrix is integrated

with time to obtain the step responses at each port. For simulation, the step response 

shown in Figure 6.5 is generated by

(6.15)1 +  e - “ ( ' - r )

where a  = 80 x l0 9 and r  = 0.75x10 '9 seconds.

A very good match between the measurement and simulation for transient responses 

at near- and far-end of each line is obtained as shown in Figures 6.6-6.10. Some of the 

spikes are due to unaccounted parasitics of the measurement apparatus.
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R
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R=50H

(b)

Figure 6.4: (a) Dimensions of a three-conductor microstrip system,
(b) network of the three-conductor microstrip system.
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Figure 6.5: Approximated input waveform.
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Figure 6.6: The near-end voltage transient waveform on conductor 1, 
measurements (solid ) and simulation (dashed).
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Figure 6.7: The far-end voltage transient waveform on conductor 1, 
measurements (solid ) and simulation (dashed).
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Figure 6.8: The near-end voltage transient waveform on conductor 2, 
measurements (solid ) and simulation (dashed).
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Figure 6.9: The near-end voltage transient waveform on conductor 3, 
measurements (solid ) and simulation (dashed).
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Figure 6.10: The far-end voltage transient waveform on conductor 3, 

measurements (solid ) and simulation (dashed).
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6.5.2 Example 6.2: Coaxial cable with skin effect

To test the accuracy of the method, a lossy coaxial line simulated and waveforms 

are compared with measurements. A 100-m long coaxial cable, shown in Figure 6.11, has 

the following characteristic parameters of transmission line as the following L=476 nH/m, 

C=0.0476 nF/m, G=0, and the resistance is characterized with a skin effect model 

described in [85] as

R(s) = A + B (s f

where R is the overall resistance in ohms per meter, A=0, B= 15.384, a=0.48288, and 

s=j2nf, w h ere /is  the frequency in GHz. The line is not terminated at the far end. A 3 V 

pulse of 2 ns rise and fall time, and a duration of 58 ns is placed at the input.

near far

100 m long coaxial line
V in

Figure 6.11: Example 6.2, a coaxial line.

For 100 £2 and 50 £2 reference impedances, the magnitude of Sn and S12 are shown 

in Figures 6.12 and 6.13, respectively. The optimal reference system used to calculate the 

response is sjL /C  =  100 £2. The solutions are compared to time-domain measurements.

The simulation and measurement waveforms for the near-end port are shown in Figures 

6.14 and 6.15, respectively. The far-end simulated and measured voltage waveforms are 

shown in Figures 6.16 and 6.17, respectively.
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Figure 6.12: The magnitude of S12, for 50 Q  (solid) 
and 100 Q  (dashed) reference impedances.
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Figure 6.13: The magnitude of Su , for 50 Q (solid)
and 100 Q. (dashed) reference impedances.
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Figure 6.14: Example 6.2: Near-end simulated voltage waveform.

Figure 6.15: Example 6.2: Near-end measured voltage waveform.
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Figure 6.16: Example 6.2: Far-end simulated voltage waveform.

Figure 6.17: Example 6.2: Far-end measured voltage waveform.
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6.6 Conclusions

An efficient analysis method of frequency-dependent, coupled transmission lines is 

presented. The frequency-dependent scattering matrix characterizing the transmission lines 

system is approximated by rational function, and recursive convolution is used to construct 

the macromodels and to incorporate them into time-domain nonlinear solvers. The MNA 

stamps corresponding to the transmission line systems are constructed as Norton- 

equivalent circuits of conductances and current sources that are updated at each time point. 

Nonlinear terminations are also handled efficiently by avoiding the overhead cost associated 

with FFT and other band-limiting processes, such as smoothing and filtering of a large 

number of points. The method does not suffer from nonphysical artificial filtering to band 

limit the impulse response of the system and the errors accumulated, due to filtering and 

numerical inversions. The algorithm enables the accurate modeling of complex 

interconnects that are often characterized in frequency-domain data obtained from 

measurement or electromagnetic analysis. Representative examples show that the method 

resolves the dilemma most analysis techniques encounter: the expedience of frequency- 

domain characterization o f transmission lines and the indispensability of time-domain 

formulation of nonlinear drivers and receivers.
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CHAPTER 7

CONCLUSIONS

7.1 Summary of Research

This dissertation extends the use of model order-reduction techniques for analog 

circuit simulation. The moment-matching, Krylov subspace and rational-interpolation 

techniques are investigated as efficient and accurate methods for simulating the transient 

response of circuits and interconnects. The order-reduction method provides a way to bring 

together the two conflicting needs in CAD tools: efficiency and accuracy. The method 

simplifies large networks using pole-residue models, while it provides a means to model 

higher-order effects. The carrier diffusion in diode and wave propagation in transmission 

lines are analyzed.

Conventional circuit simulation methods are reviewed in order to show that the 

traditional techniques are only good for lumped-element models, and that they are not 

suitable for distributed networks. Pade analysis is presented to demonstrate that a rational- 

function synthesis is a viable means to improve the simulation accuracy and efficiency of 

distributed systems. Although the Pade synthesis via Krylov subspace methods such as the 

Amoldi and Lanczos techniques are superior to the moment-matching method, the presence 

of closed-form recursive formulas to generate the associated moment makes the
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moment-matching method an efficient and suitable tool to generate reduced-order models of 

distributed effects that are smooth functions of frequency.

Based on these observations, the Pade synthesis is used to accurately model the 

carrier diffusion in p-n-junction diodes. A recursive relation is derived for the first time to 

generate the moments of the carrier concentration efficiently. This new approach is more 

accurate than those of traditional methods that use simple, equivalent linearized-device 

models. The new method was able to accurately calculate the forward- and reverse- 

recovery effects in diode circuits. The results are favorably compared to recent work by 

Chang [90], who addressed the problem.

A robust rational interpolation algorithm that uses frequency scaling and shifting is 

introduced. Instead of normal equation method, Householder QR orthogonalization is used 

to solve the resulting over-determined and ill-conditioned linear systems. The rational 

interpolation is followed by a stable, pole-clustering technique to obtain a reduced-order 

model. The effects of the dominant poles that are close to the jco-axis are maintained by 

using inverse distance-measure criterion (IDM). The IDM automatically gives larger 

weights to the dominants poles. Furthermore, the recursive-convolution techniques are 

used to improve the computational cost to calculate the response of a system. The method is 

applied to model electromagnetic systems characterized by sampled data. The improvement 

over those recent methods that use the normal equation method is demonstrated by 

examples [19], [109].

The rational-interpolation method is used to analyze an arbitrary coupled 

transmission line system. The system is formulated using scattering parameters. Using an 

appropriate reference system, the scattering parameters are made smooth function of 

frequency, simple enough to be approximated by low-order rational functions. Using the 

analytical transforms of the partial-fraction expansions and recursive convolution, the 

response of the transmission line system for arbitrary terminations is calculated. The 

method bypasses numerical transforms and artificial low-pass filtering that the traditional
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methods use to avoid aliasing and unwanted ringing. The method’s accuracy is verified 

with measurement data.

7.2 Suggestions for Further Studies

This dissertation has presented, for the first time, the fundamentals necessary to use 

model order-reduction techniques for diode modeling. The work in Chapter 4  can be 

extended to analyze p-n junction devices with arbitrary doping profiles. The spatial 

variation of doping profiles can be approximated using appropriate interpolating functions 

and similar order-reduction techniques can be applied. The extension of the method to field- 

effect devices, such as MOS, need to be investigated.

Pade approximation is notorious for generating unstable solutions. As discussed in 

Chapter 3, several techniques have been applied to circumvent these problems. However, 

almost all of these methods are heuristic, and there is no systematic way to choose 

expansion points that guarantee a stable solution. The work on rational Krylov methods

[126]-[129] can shed some light on these problems. One important topic that merits further 

investigation is the relationship between the rational Krylov subspace method and the 

rational-interpolation method developed in Chapter 5.
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APPENDIX A

Derivation of Scattering Parameters

The general solution of Equation (6.5) can be written as

Vm W  = W i-x)  4  + y/(x) B
(A. 1)

Im{x) = Z : '[ v ( - x ) A - y r { x ) B ]  

where A and B are determined from the boundary conditions. The modal incident and 

reflected wave vector pairs (A,, B,) and (A,, B2 ) at transition planes of Port 1 and Port 2, 

respectively, are defined as shown in Figure 6.2. The voltages and currents, V, and I,, are 

related to the incident and reflected waves at the reference system in Port 1 by

Vx = (.x) = yr0(-x )  A, +\j/0(x) Bx

W  = Z’1 !> „(-* ) A, -  y/0(x) B,] (A '2)

where y/Q(x) = diag[e]0lX'z,ei a A l x and X -s  are the square roots of the 

eigenvalues of L0C^

It is assumed that excitation is provided only at Port 1, which makes A,=0. Because 

the line voltages and currents are equal to the reference and test systems on Port 1, we have

e j H  + a ;] = £ - '[ / ! + fl]
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Also, by requiring that the line voltages and currents be continuous at the junction 

plane between the reference and test systems at Port 2, with A,=0 , we obtain

E~'[y/(-l)A + y (1)B] = Eq1Zq1 H0H~lZ~l\y /(-l)A  -  yr(/)B] (A.4)

Solving (A.4) for B in terms of A and recalling 'P = we have

B = -T P P A  (A.5)

where

r  = ( 1  + e Eq'ZqHqH ^Z'*  )-1 (l -  e e ; 'z qh qh - 'z : ')  (a .6 )

Then, A is expressed in terms of A, as

A = 2 ( l - r 4 T vf ') ' l7A1 (A.7)

Finally, the relationship between B, and A, is given as

s, = r ' ( r - vp r vF) ( l - r p p p ^ ' r A ,  (a .8)

where

r  = (1 + e e ; 'z 0h „h - 'z -j Y  e e ; ' (a .9 )

From the boundary conditions at junction plane of Port 2, we have

B2 = E0£ - '[VFA + (A. 10)

By using previous relations for A and B in terms of A , , we get

b2 = 2 E 0E-1( i - r ) ' P ( i - r vF P P ) ', rA1 (A .ii)

Therefore, the modal scattering parameters relating the line incident and reflected 

waves are given by

s„ = 7 '1( r - vF r vF ) ( i - n p p p ) '1r  (A .1 2 )

s 2l = 2E0E ',( i - r ) vp ( i - p p r vp r , r  (A .i3)

The actual scattering parameters of the test system are obtained from modal 

scattering parameters using the eigenvectors of the reference systems as
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5 = E S  E 

5 = E~'S EO j2  —  J | 2  0

By symmetry, the 2nx2n scattering matrix is given as

5 =
5,, 5,12

(A. 14)
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